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SECTION I




MARTIAN GLOBAL TECTONICS

Richard A. Schultz




ABSTRACT

Scarps, ridges, and graben within the heavily cratered
terrain of Mars define distinct groups of structural trends
on a regional scale, and a pattern of crustal deformation
on a global scale. These trends are the result of
regional deformation of the crust, rather than the imposi-
tion of a single planet-ﬁide stress system. Centers of
deformafipn are spatially related by a systematic global
pattern. As the relative ages of measured structures
in the heavily cratered terrain seem to generally predate
both the emplacement of Lunae Planum-aged volcanic units
and the structural and volcanic activity near Tha:sis,
this structural pattern is thought to reflect a funda-
mental global organization of volcanic and tectonic
activity. This pattern was‘developed early in martian.
history, and served to localize subsequent crustal modifi-
cation. The earliest manifestation of this pattern was
in primarily mechanical deformation of the crust. This
was globally asymmetric and most intense in the northern
third of the planet; it guided the formation of the
planetary dichotomy boundary, much of the original struc-
ture of the associated fretted terrain and, in addition
to local volcanism, may have contributed to the NE-SW

asymmetry of the later Tharsis-related graben sets. The




other major phase of activity was primarily thermal; this
produced the extensive volcanic plains of Lunae Planum-
age near Tharsis and, to a lesser extent, in Syrtis Major
and Hesperia Planitiae. Subsequent, more local activity
along this global pattern seems to have contributed to
plains volcanism southwest of Hellas, constructional vol-
canism in the Tharsis region, and modification of surface

landforms in areas of fretted terrain.
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INTRODUCTION
Mars has undergoné several episodes of large-scale
:crustal deformation since its terminal meteoritic bombard-
ment, as suggested by its surface morphology. Perhaps
the most fundamental of these is that which gave rise
to the planet's distinctive north-south terrain dichotomy.
The origin of this dichoiomy, as well as the associated
fretted and‘knobby terrains that are commonly used to
define its boundary, remains a major enigma in martian
geophysical research.

Several other tectonic provinces are regionally.
important (see Figure 1). 0f these, Tharsis is perhaps
the youngest and most highly developed. It is marked
by extensive plains-forming volcanism (e.g., Lunae, Syria,
and Tharsis Plana) and several major volcanic constructs
(e.g., Olympus Mons, Tharsis Montes, Alba Patera). Radial
fracturing, in the form of graben and canyons, extends
into the adjacent terrains. A smaller area of comparable
age is Elysium, which is also characterized by large vol-
canic constructs, volcanic plains, and radial fracturing.
an older region of similar, though less intense, activity
is centered in Thaumasia; the trends of some structural
features near Tharsis (e.g., Echus Chasma and portions

f the Valles Marineris) likely follow the trends of older

Thaumasia-radial fractures [Frey, 1979]. Detailed studies
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Fig: 1. Location map of =ajcr features o Mars. Base

map of global geology after scott andé Carr [197g].
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of the structural geology of portions of these areas may
be found in Carr [1974], Blasius et al. [1977], and Wise
et al. [1978]. Comprehensive reviews of Tharsis and
globzl volcanism can be found in Plescia and Saunders
[1979a] and Greeley and Spudis [1981].

Very little is known about the structural history
of the heavily cratered terrain of Mars. This area
includes over half the surface area of Mars and is prob-
ably the mos£ ancient terrain on the planet. The major
features developed in and around this terrain are very
large multiringed impact basins (e.g., Argyre, Isidis,
and Hellas) and relatively smaller impact craters of vary-
ing diameters; the Valles Marineris and Tharsis-related
graben systems; the Thaumasia rise; and a 2- to 3-km-high
discontinuous escarpment, marking the planetary dichotomy
boundary, and separating the high-standing, heavily
cratered terrain from the lower, smoother cratered plains
to the north. The heavily cratered terrain is modified
by the development of chaotic terrain [Sharp, 1973],
regional systems of outflow channels, interpreted by Sharp
and Malin [1975] as possibly being of fluvial origin,
ané digitate networks of narrow valleys [Pieri, 1980].
Many of these features have been inferred to have formed
along older structural trends in the heavily cratered

terreain.
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Many well defined linear structures and regional
trends also can be identified in the heavily cratered
terrain. These are recognized in Viking images as scarps,
ridges, and graben-like linear depressiocns; studies of
these structures form the basis of this study. The prin-
ciple objective of this research is to attempt to address
the following guestions:

1. Are the structures developed in the heavily
cratered_tefrain organized on a global or regional scale,
or do they reflect local stress histories?

2. How do these structures relate to the planetary

dichotomy boundary and to Tharsis tectonism?

Background

As used in this paper, the term "tectonic" will be
restricted to describe those processes that deform the

crust of a planet; "structure" will refer tc the deforma-

tional features formed in the crust by fracture as a result

of some tectonic activity.

Of the terrestrial planets and the Moon, only Mercury
and the Earth currently show evidence of significant,
globally-organized tectonics. Dzurisin [1978] mapped
and classified structures on Mercury; based on theoretical
work [Melosh, 1977], Dzurisin {1978) and Melosh and
Dzurisin [1978] suggested that the orthogonally trending
lineaments represented conjugate shear fractures resulting

from tidal despinning of the planet. Similar orthogonal
15



lineament trends have also been suggested for the Moon
[Fielder, 1961; Strom, 1964]; however, the lack of signifi-
cant strike-slip displacement along these fractures, as
well as the angles between them, argues against such a
model for their formation.

Martian lineameﬁts were suggested by studies of
Mariner IV images [Binder, 1966] and later missions
[Binder and McCarthy, 1972; Wilson et al., 1973; Schultz
and Ingerson; 1973]. The most comprehensive pre-Viking
study of lineament patterns was that of Harp [1976], who
utilized the extensive Mariner 9 data set.

Schultz and Ingerson [1973]) first mentioned possible
difficulties in identifying a global structural pattern
if regional deformation were superimposed upon it; such
regional structures might have been produced or enhanced by
the formation of fractures radial to large impact basins
[Casella, 1976; Melosh, 1976]. Gifford [1981] studied
the distribution and trends of well developed mare-type
wrinkle ridges located in relatively isolated regions
of inferred volcanic plains. Although the origin of
wrinkle ridges is unclear, they seem to have been produced
through some combination of volcanic and tectonic pro-
cesses, and may locally follow pre-existing structural
trends [Young et al., 1973; Lucchitta, 1976]. The martian
wrinkle ridges studied by Gifford [1981] are restricted

to local geologic units and, to date, no attempt has been
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made to infer whether these features follow any globally
organized pattern, although relations to regional Tharsis
tectonism have been §uggested [Plescia and Saunders,
1979b; Wise et al., 1979; Phillips and Lambeck, 1980;
Gifford, 1981; Plescia and Saunders, 1981}.

The nearly orthogonal set of lineament trends sug-
gested by Binder [1966], Binder and McCarthy [1972],
Wilson et al. [1973], and Harp [1976] are oriented sym-
metrically to both the present rotation axis and the
equator; these trends were interpreted as conjugate shear
fractures, based on the model developed by Vening-Meinesz
[1947] and expanded upon by Melosh [1977]. Acquisition
of systematic high resolution images by the Viking Orbiter
spacecraft now makes possible a reexamination of these

martian linear features.
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STRUCTURAL MAPPING

Summary of Approach

A reconnaissance survey of possible structural fea-
tures in the heavily cratered terrain of Mars was undér-
taken; the resulting inventory of possible structures
from various parts of the planet comprise the basic
observations. These features, after morphologic studies,
were plotted'in azimuth-frequency (rose) diagrams to
identify dominant trends and to facilitate comparisons
of features from widely separated locations on the planet.
In this study, north and south latitude will be given
in positive or negative degrees, respectively; longitude

increases from 0° to 360° to the west.

Coverage

Selected areas of Mars were chosen for detailed study
on the basis of the availability of sufficient images
of roughly comparable and uniform resolution in a given
area. These areas are shown in Figure 2.

The surface of Mars has been divided into 30 broad
regions for mapping purposes. Maps of each of these
regions are termed "Mars Charts" (abbreviated MC), which
are assigned a number, and "quadrangles," which are named.
A gquadrangle can be subdivided into four parts, designated

NE, NW, SE, and SW. Images used in this study are those

18




acquired by the Viking Orbiter spacecraft; these can be
studied in either of two digitally-produced map projec-
tions: rectilinear or orthographic. Rectilinear images
preserve the perspective of terrain features as viewed

and recorded by the Orbiter, commonly from an oblique
angle. These images are useful for identifying structural
features. The viewing angle of a scene can be artificially
changed from oblique to vertical using digital image pro-
cessing techniques; this new version is called an
orthographic projection. Although the terrain is somewhat
distorted, these altered versions are useful for measuring
the lengths and azimuths of structures, as well as for
making mosaics of maltiple images. Many such mosaics

were compiled at the Jet Propulsion Laboratory in
Pasadena, California, and are identified by a sequential
four-digit number affixed to a 211- prefix (e.g., JPL
mosaic 211-5501).

Preference was given to areas that contained either
prominent structural features or some desirable location
within the heavily cratered terrain. For example, data
were taken from within the Ismenius Lacus Quadrangle
because certain structures there locally parallel, and
often merge with, elements of the fretted terrain marking
the planetary dichotomy boundary. On the other hand,
structures in close proximity to major impact basins (e.g.,
Hellas) wére not included, in order to evaluate structural

19



Fig. 2. Coverage map of study regions within the

heavily cratered terrain.
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trends in the heavily cratered terrain produced from endo-
genic processes. The results are generally representative
of the heavily cratered terrain north of the equator.
The areas studied include regions located near Tharsis,
but in the heavily cratered térrain (MC-16); near the
Elysium volcano-tectonic province (MC-23); in areas of
extensive channeling (MC-19); within the heavily cratered
terrain (MC-20 and MC-12); adjacent to fretted terrain
{(MC-5, 211—5541); and between Isidis and Hellas basins
(Viking Orbiter frames 625A01 through 625A08 in MC-21).
Many graben sets extend from Tharsis deep into the
heavily cratered terrain; no effort was made to map the
most obvious of these structures, as they appear to be
generated from a well defined regional source [Wise et
al., 1979]. Although in the heavily cratered terrain
the orientations of Tharsis-related graben could con-
ceivably reflect a composite of Tharsis-generated stress
trajectories and movement along pre-existing structural
trends, structures located elsewhere would most likely
define such older trends more precisely and with less
"noise® from later, superimposed deformations. Analysis
of the trends of Tharsis-related graben, however, are
useful in estimating how much of their development, if

any, was influenced by older structural trends, once these

have been isolated.
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Morphology

Three general types of features were studied:
scarps, ridges, and graben. Examples are shown in Fig-
ures 3 and 4. The scarp illustrated in Figure 3a is
typical of many well developed structures elsewhere in
the heavily cratered terrain. It defines a distinct break
in topography of both the surrounding plains and the
transected crater; virtually no lateral offset or dis-
placement no%mal to the trend of the scarp can be detected
in the vicinity of the crater. Similar scarps in other
regions may be somewhat less strongly defined, but the
general characteristics of a continuous topographic break
are maintained.

As the form of scarps have little similarity to
features interpreted as lava flow fronts [Greeley and
Spudis, 1981], they are here thought to represent fault
scarps; the lack of lateral offsets of transected craters
suggests prédominantly vertical or nearly vertical motion.
Many of these structures are here interpreted as scarps
associated with normal faults, although an origin as high-
angle reverse faults is not precluded.

Ridges are somewhat less common in the heavily cra-
tered terrain than scarps. Figure 3b shows a prominent
ridge. It is located on what is now an irregular plateau;

note the graben-like linear trough that transects the
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Fig. 3. Examples of scarps and ridges measured in
this study. Note the pronounced topographic expression
of the westwardly facing scarp in Figure 3a and the ridge
in Figure 3b; this ridge was transected by one of the
Tharsis-related Memnonia Fossae.’ Scale bars represent
100 km; north towards the top. Viking Orbiter frames

637A75 (3a) and 637A82 (3b).

a. Scarps in the heavily cratered terrain

b. Ridges in the heavily cratered terrain

24
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ridge: it is a member of the Memnonia Fossae that are
radial to Tharsis.

The drigin of these ridges is unclear. They seem
unrelated to volcanic processes, and appear to deform
crater walls and floors. Their cross-sectional profiles
vary from asymmetric in fresher examples to more symmet-
rical in some heavily furrowed examples (both types can
be seen in Figure 3b). In addition, some isolated curvi-
linear ridgés of similar morphology are arranged in
circular patterns suggesting that they are massifs asso-
ciated with partially preserved crater rims. If crater
rims represent structurally uplifted crustal material,
then it is possible that the ridges might represent modi-
fied fault scarps.

Graben can be identified with reascnable confidence
on Mars. Perhaps the best examples are the morphologically
crisp graben racdiating from Tharsis. A few of these are
included in Figure 3b at lower left; they are commonly
long, linear depressions with nearly vertical walls that
may occur singly or in subparallel sets. Where graben
transect other features with relief, a portion of this
relief can freguently be seen on the down-dropped flocr
of the graben.

Many other graben occur in the heavily cratered ter-
rain far from Tharsis. Two subparallel sets of these

are shown.in Figure 4. Although less sharply defined
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than those around Tharsis (and others near Elysium), they
are similar in both morphology and their subparallel
arrangements. In some instances (e.g., Figure 4a),
narrow digitate valleys appear to merge with the graben
or follow parallel or subparallel trends. Pieri {1980]
suggested that such valleys might develop along clder
structural trends; if so, they might aid in identifying
very subdued graben.

Othe:, éomewhat more subtle graben lack the associated
valley networks (Figure 4b). The particular examples
shown here strike into a mountainous escarpment, suggested
by Saunders et al. [1978], Schultz and Glicken [1979],
and Schultz et al. [1982] to represent an inner ring of
a Ladon multiring basin. Such transectional relationships
can be.used to infer relative ages of structure-forming
events.

In addition to the three general types of structures
discussed above, two others were examined; shown in Fig-
ures 5 and 6, these are polygonal crater wall scarps and
channel wall scarps, respectively. Polygonal crater wall
scarps are straight rim wall segments that combine with
other portions of the crater rim to give an angular or
polygonal appearance in planimetric view. For the craters
examined in this study, these wall scarps do not seem to

be associated with wall terracing and slumping; generally,
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Fig. 4. Graben of the heavily cratered terrain are
shown in Figures 4a and 4b. Such graben commonly occur
as sﬁbparallel sets and are reminiscent of the morpholog-
ically crisper Thaunasia Fossae south of Tharsis. Note
the development of éigitate valleys in Figure 4a that
locally trend normal to graben trends, and the apparent
¢isruption of Ladon basin-related mountains (arrow) in
Figure 4b. 'Scale bars represent 100 km; north towards
the top. Viking Orbiter frames 650A20 (4a) and 650Al4

(4b).
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Fig. 5. Polygonal crater wall scarps (arrows) in
MC-21. Note :the similerity of trends between crater wall
scarps and the trencs of nearby ridges and scarps. Scale
bar represents 100 km; north towards the top. Viking

Orbiter frame 623A0S8.
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Fig. 6. Channel wall scarps are illustrated in Fig-
ures 6a and 6b. Note the prevalence of linear escarpments
forming the boundaries of the channels (arrows), and the
subtle scarp that parallels a channel wall scarp in

Figure 6b (arrow). Scale bar represents 100 km; north

towards upper right. Viking Orbiter frames 651A53 and
651A56.
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failure of crater rim walls results in scalloped, rather
than linear, rim wall segments.

Channel wall scarps are the second subclass of struc-
tures investigated. Examples of these are given in
Figure 6. It has been suggested that many of the large
outflow channels and some sections of chaotic terrain,
as well as fretted channels and portions of fretted ter-
rain, might in part be guided by regional structural trends
[Sharp and ﬁalin, 1975]. Figure 6a shows a portion of
a typical channel in the Margaritifer Sinus region (MC-19).
Many of the mesas are bounded by parallel scarps (arrows)
of various orientations; "fretting" may also locally
parallel these scarps. This is illustrated in Figure 6b,
where inter-mesa troughs form a rectilinear pattern that
may parallel some of the enclosing scarps (arrows). In
Figure 6b a north-facing scarp located at center right
(arrow) parallels the channel wall scarp to the south.

"Structure," as used here, refers to a morphologic
feature with significant topographic expression to be
identified, and whose surface expression is sufficiently
distinct to allow genetic classification, based on ter-
restrial analogs (e.g.} graben). Specific examples of
structural features used in this analysis are reviewed
below; it is important to point out the main limitation
of this approach: the observations are systematically

biased in favor of the most prominent or easily

34




recognizable structures. This approach limits the sensi-
tivity of the data to small-scale changes in trend or

the detection of transectional relationships (used to
infer relative ages). Although many subtle or less
familiar structural features were probably neglected,

this approach results in a collection of features composed
solely of structures resulting from crustal deformation
(of unspecified scale) and whose origin (and hence, pos-
sible relatiéns to principal stress trajectories) can be
inferred.

The linear features illustrated in Figures 3 through 6
and discussed above are assumed to be morphologic expres-
sions of well defined subsurface structural trends. This
is a limiting assumption, as any features that do not
follow correlatable regional trends will contribute to
scattering of the data when they are plotted; it is also
probable that many other structures, of different surface
expression, were not included in the mapping effort. For
the purpose of this research, however, which is to outline
the dominant structural trends (if any) based on these
structures, the overall effect of these aésumptions is

probably minor.

Procedure
Viking Orbiter images (5" x 5" contact prints) for

each area of interest were obtained for study. Data
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recorded for each structure in an image included the
Viking Orbiter frame number (s), the mosaic number (if
applicable), the MC guadrangle in which the structure
was located, its latitude and longitude, length, width,
strike (and face direction, if a scarp), its morphologic
class, and the solar incidence angle for each image. Ele-
vations of selected scarps and ridges were estimated from
orthographically projected images using shadow lengths.

In gene%al, rectilinear versions of the images were
used in locating and identifying structural features,
as these have been minimally processed. All measurements
were made on the orthographic prints to assure uniformity
of scale and orientation. Latitude and longitude were
"rounded" to the nearest degree, as was strike; length
and width were measured to the nearest kilometer. Accuracy

of the strike measurements is estimated at % 2°.

Results

Initial manipulation of the observations was in the
form of rose diagrams, of which two types were employed:
azimuth-frequency, displaying the number of structures
oriented in a given general direction; and total length-
azimuth, displaying the cumulative length of these
structures compared to their azimuthal distribution. One
azimuth frequency and one total length-freguency diagram

were prepared for each of the regions studied; in some
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instances, separate diagrams for each morphologic type
represented (e.g., scarps and graben) were made if suffi-
cient numbers of each were available to make such a
breakdown statistically meaningful.

Before discussing the trend distributions for each
region, some comments on the applicability and limitations
of rose diagrams are necessary. Data from trends in MC-16
provide an illustrative example (see Figure 7). Each
of the diagréms was constructed using 5° bins (e.g., 1°-5°,
6°-10°). This results in some trend maxima whose precise
strike directions are not known, due to the arbitrary bin
size. Two conventions were employed to accommodate this:
if a solitary peak occurs {(as at N2W in Figure 7a), then
a "mean" trend is assigned to represent the trends in
that bin [Batschelet, 1965]; if two roughly comparable
peaks occur adjacent to one another (as at N30E), the value
assigned is shifted to an average value between them.

Results of the statistical analysis for each study
region follow, as weli as discussions of the relations
between trends, morphology of the structures included in
these trends, relative ages, and possible observational
biases. Interpretation and correlation of these trends
appear in a later section.

Memnonia Quadrangle (MC-16). Figure 7 shows the

distribution of mapped structural trends in this quad-

rangle. Most of the structures strike between N2W and
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Fig. 7. Rose diagrams for the Memnonia Quadrangle

(MC-16), all structures.

a. Azimuth-frequency

b. Total length-frequency
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N12E, ard the scarps and ridges possessing these trends

show the greatest relief of any in the gquadrangle. Some

of these structures are shown in Figure 8: note the
abrupt terminations on both the east and west faces of
the mountainous terrain, the apparent truncation of a
crater at A, and the Tharsis-related graben (Memnonia
Fossae) at 3, members of which transect all structural
trends in the area. The height of the prominent ridge 1
at C, as irferred from apparent shadow length measurements, |
is over 3.5 km.

ther well developed trends illustrated in Figure 7
are those of N30E, N40W, N60W, and N80W. Those structures
trending N8JW, though, are much more subdued than struc-
tures trencing in other directions; in the absence of
significant nunbers of fault intersections, assignment of
& greater relative age is difficult.

Leolis Quadrangle (MC-23). The Aeolis Quadrangle

lies adjacent to and west of Memnonia. Approximately
three Zourths of the guadrangle was mapped in this study,
as very little of the heavily cratered terrain is located
in the excluded gquadrant.

Many Lroad, linear troughs are developed in the
northern pcrtions of the quadrangle. One of these,

Al-gahi

Al

f

Vellis, is shown in Figure 9 and is composed

oZ linear escarpments bounding a flat floor; other troughs

formm a regular interconnecting network, suggesting
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structural control. The main reach of Al-gahira

resembles the Alpine Valley northeast and radial to the

Imbrium basin on the Moon [Mutch, 1972]; although a basin-

related origin is not necessarily suggested for this

system, structural control of its development seems likely.
The statistical distribution of structural trends

in MC-23 is given in Figure 10. Three prominent trends

are suggested by the azimuth-frequency diagram: N50W,

N6E, aﬁd N22é; the N38E trend apparently contains a few

long structures, as suggested in Figure 10b.

Arabia Quadrangle (MC-12). The Arabia Quadrangle

occupies the north-central portion of the heavily cratered
terrain (see Figure 2), approximately midway between the
fretted terrain on the planetary dichotomy boundary to

the northeast, and the extensively channeled Margaritifer
Sinus region to the southwest. Extensive scarp devel-
opment occurs in the northeastern corner of the guadrangle;
these scarps become fewer to the southwest.

Two main structural provinces can be identified from-
the number per unit area, uniformity of azimuthal trend,
and topographic expression. The northeast corner of the
northeast portion of the guadrangle contains a large number
of long, high scarps with relatively crisp morphologies,
most of which are subparzllel to one another. As these
are continuous with very similar structures in the

Ismenius Lacus Quadrangle (MC-5) to the northeast, this
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Fig. 8. Ridges and scarps in Memnonia locally exhibit
pronounced relief. Flows with low-albedo surfaces emanating
from Tharsis can be seen at right; note the apparent crater
truncation by the scarp at A, and one of the Memnonia Fossae
graben at B. Height of the ridge at C is estimated at
3.7 km. Scale bar represents 100 km; north towards upper

right. Viking Orbiter frames 639A11 and 639Al2.
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Fig. 9. Possible structural troughs in the Aeolis
Quadrangle (MC-23) are generally straight, developed along
regular trends, and have flilat floors; the system shown
here is Al-gahira Vallis. Scale bar represents 100 km;
north towards upper right. Viking Orbiter frames 596247

and 596A50.
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Fig. 10. Structural trends in the Aeolis Quadrangle

(Mc-23) .

a. Azimuth-frecuency diagram

b. Total length-frequency diagram
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region, between 30,325; 20,325; 30,315; and 20,315, will
be considered jointly with MC-5 and separately from the
rest of MC-12. The boundary of this region, hereafter
referred to as MC-12 NE-NE, and the remainder of the
quadrangle is abrupt. Northeast of this boundary, the
scarps are prominently developed; to the southwest, very
little structural deformation is apparent.

The structures in Arabia can be seen to follow a
number of preferred directions. Figure 11l illustrates
these trends; NNW-trending structures in MC-12 NE-NE are
excluded from these diagrams. Structures of equivalent
orientation, N17W, are prominent elsewhere in the gquad-
rangle and, indeed, numerically dominate all other trends.
Whether the boundary previously referred to represents
a change in the intensity of faulting or a major difference
in material properties is unclear; the importaﬁt observa-
tion is that this N17W trend is well expressed throughout
the quadrangle, regardless of apparent differences in
topographic expression along the trend.

In the western portion of the Arabia Quadrangle,
two prominent trends occur, centered at N30W and N45W.
The azimuthal variation about both trends is broad (15°);
a2 somewhat tighter clustering is found in their total
length-azimuth distributions. Although structures trend-

ing N17W are more numnerous than either of the other
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westerly trends, the total length-azimuth data suggest
a more eguitable relationship with respect to length.

Structures trending N62W and N72W appear to be numer-
ically less significant than any of the three previous
trends discussed above; examination of the total length
data, however, seems to imply that both of these trends
are related to a small number of relatively long structures
trending approximately N68W. An examination of the data
shows that ﬁost of the features with a similar trend are
scarps, although a few are graben. These structures are
extremely subdued and frequently support superposed
valley networks. 1In addition, transectional relationships
with other structures seem to suggest that many of these
N68ﬁ—trending structures are the oldest linear features
in the guadrangle.

It is apparent from Figure 11 that no well defined
"conjugate sets"” of orthogonally-oriented structures are
represented in this quadrangle. Although some trend sets
do appear to be nearly orthogonal (e.g., N45W and N42E),
their member structures are restricted to local occur-
rences. For example, a block-like mesa might trend N45W
and be bounded on one side by a short scarp oriented
normal to the long direction of the block; if only three
sides of the block are well expressed (as commonly occurs),
these data might be recorded as two relatively long scarps

at N45W with one short'scarp at N45E. Although such
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Fig.

(MC-12) .

11.

a .

b.

Structural trends in the Arabia Quadrangle

Azimuth-Zrecuency distribution

Total length-azimuth distribution
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trends might be taken as evidence of conjugate shear sets,
these approximately orthogonal structures need not have
resulted as shear fractures. Rather, such locally orthog-
onal trends might result as an artifact of faulting along
a single major structural trend.

In summary, several well defined structural trends
can be isolated: the most subdued scarps and graben are
cumulatively the longest in the guadrangle and trend
approximately N68W; these are transected by structures
of most other trends. Although the N45W and N30W trends
are quantitatively important, structures trending N17wW
are dominant in total numbers and are slightly greater
in total length than these other westerly trends.

Easterly trends cluster much more tightly about a given
azimuth than the westerly trends, although they seem to
be less important.

Ismenius Lacus Quadrangle {(MC-5). The Ismenius Lacus

recion, lying northeast of Arabia and adjacent to well
developed fretted terrain, contains perhaps the most prom-
inent display of subparallel linear scarps on the planet.
Figure 12 illustrates some typical examples. The long,
linear scarp that displaces the crater at A and whose
sense of displacement changes from west to east at B
strikes approximately N28W; the prominent scarp at C
strikes N13wW. Very little lateral (i.e., strike-slip)

displacement can be observed zlong these scarps, and given
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the sharp, linear faulting of the crater at A, these struc-
tures are thought to reflect dominantly vertical to nearly
vertical motion.

Structures included in the azimuth-frequency and
total length-azimuth diagrams shown in Figure 13 are those
from JPL mosaic 211-5741 and MC-12 NE-NE. The dominantly
unimodal distribution of structural trends in Figure 13
is striking; aside from small peaks centered near N32E
and N42WL tﬁe majority of azimuths (irrespective of their
lengths) cluster about a N19W trend. Examination of the
length data, however, shows that the longest structures
generally trend approximately N28W, and that the N18W
and N42W trends contain similar numbers of structures of
similar total length. It appears, therefore, that the
predominant structural trend in this region, based on
the large number of long structures, is N28W; the N42w
and N18W trends, then, contain a moderate number of
moderately long structures and a great amount of very
short stfuctures, respectively. Many such scarps in the
easternmost portions of the quadrangle often are parallel
to, and locally merge with, linear depressions of the
fretted terrain.

Margaritifer Sinus Quadrangle (MC-19). JPL mosaic

211-5821 was used in conjunction with USGS subgquadrangle
mosaic MC-19 SW to study some of the extensively channeled

portions of the heavily cratered terrain. A variety of
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Fig. 12. Scarps near the fretted terrain in the
Ismenius Lacus Quadrangle (MC-5) show pronounced topo-
graphic relief: height of the scarp at A is greater than
1 km. Note the subdued expression of the scarps in Fig-
ure 12b and apparent crater transections (arrows). Scale
bar represents 100 km; north towards the top. Viking

Orbiter frames 569A29% and 569A30.
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Fig. 13. Structural trends in the Ismenius Lacus

Quadrangle (MC-5).

a. Azimuth-freguency distribution

b. Total length-azimuth distribution
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terrain types are found in the region, including, from
north to south, the heavily channeled regions south of
Chryse, the easternmost reaches of the Valles Marineris,
zones of large-scale chaos formation (Aureum, Margaritifer,
Iani Chaos), and regions of valley networks (e.g., Ladon‘
Valles). The extreme southern end resembles more

"typical" heavily cratered terrain as seen elsewhere (as
in MC-20), and possesses a pronounced topographic "grain"
resultihg frém generzlly northeasterly-trending scarps

and valleys..

Trends for all structures measured in this region
are given in Figure 14. A generally bimodal distribution
of trends is apparent: a northwesteriy group and a north-
easterly group. Structures comprising these two trends
are dissimilar in both relative age and in morphologic
type. All graben recorded in the region were compiled
and are plotted in Figure 15: they have a strong maximum
frend near N78W, along with some minor easterly trends.
These subdued ,raben were consistently transected by
other structures, suggesting a relatively early formation.
All other structures were similarly compiled and are pre-
sented in Figure 16. Note the predominance of northeast
trends, the maximum of which is more precisely defined
by the length data in Figure 16b as being near N32E.

Other stronc maxima &are at N42W and N18W.
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It is probable that the structures plotted in each
of Figures 15 and 16 spah a range of relative ages. It
is éignificant, however, that the earliest structures,
the graben, show a pronounced peak in one direction,
whereas later structures seem to be preferentially devel-
oped along a distinctly different set of trends.

Sinus Sabaeus Quadrangle (MC-20). Images from the

southern half of the Sinus Sabzeus Quadrangle were
examined fof features suggesting structural trends; this
area lies south of MC-12 (see Figure 1), directly east
of the Margaritifer Sinus region, and northwest of Hellas
basin. It is very heavily cratered and has been the site
of prevalent structural deformation in the form of scarps,
ridges, and cgrzben.

Figure 17 shows the structural trends for this area.
The scale of this diagram has been doubled in order to
improve its clarity. An anomalous pPeak occurs in the
total length-azimuth plot (Figure 17b): it is a single
graben-like trough, 585 km long, that might be concentric
(and related) to Hellas. A smaller peak at N68W, also
composed of a very few long structures, is consistent
with a Hellas-radial orientation.

The remaining trends, however, show no clear relation-
ship to either Hellas (aside from their relative proximity)
or Isidis basins and might represent regional trends.

These are .N42W, N28W, N32E, NX56E, and NBOE, all of which
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Fig. 14. Structural trends in the Margaritifer Sinus
Quadrangle (MC-19) and vicinity show a bimodal distribution.
Note the changes in relative importance of longer struc-

tures in the N12E, N28E, and N78W groups.

a. Azimuth-Zrecuency distribution

b. Total length-azimuth distribution
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Fig. '15. Graben trends in MC-19 and vicinity cluster
about a strong N78W peak; smaller N1llE and N28E trends are

also present.

a. Azimuth-frequency distribution

b. Total length-frequency distribution
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Fig. 16. Channel wall scarps, ridges, and scarps in
MC-19 and vicinity generally transect the graben in Fig-
ure 15; note the predominance of northeast trends and the

cluster near N32E in the length data.

a. Azimuth-frequency distribution

b. Total length-azimuth distribution
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Fig. 17. Structural trends in the Sinus Sabaeus

Quadrangle (MC~-20) .

a. Azimuth-frequency distribution

b. Total length-azimuth distribution
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seem roughly comparable in total numbers and lengths of
their included structures. There appears to be no strong
correlation between morphologic type and structural trend.

Iapygia Quadrangle (MC-21). A small portion of the

heavily cratered terrain lying approximately midway between
the Hellas and Isidis basins was selected for study. This
area contains a large number of craters whose planimetric
forms are polygonal rather than circular. Some of these
are shown in Figure 5; note that, in many cases, the linear
scarps that form the sides of the crater polygons run
parallel to one another in various sets. Moreover, the
craters that are the most strongly polygonal fall within

a specific size range (here, 10 to 30 km) and relative

age class, in that very young craters with extensive ejecta
deposits do not show pronounced polygonality; those of
intermediate age are the best developed, and oniy a few

of the oldest show evidence of linear rim segments.

Meteor Crater in Arizona is perhaps the best terres-
trial example of a crater of this type. Shoemaker [1974]
hes suggested that the squarish shape of the crater
resulted from its development in a target with strong
regional structural trends. Indeed, both subparallel
sicdes 0f the crater are alignecé with the directions of
preexistinc structural trends: a northeast-trending

joint set and a northwest-trending system of normal faults.
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Although some martian linear crater wall.segments
appear to result from superposition of two or more craters,
it is apparent that many polygonal craters, especially
those isolated from others, seem likely to have been pro-
duced in a manner analogous to that of Meteor Crater;
that is, impact into a target with previously developed
local or regional structural trends.

In addition to polygonal crater wall scarps, other
structures were measured, including scarps, graben, and
a few ridges. These data were combined with those trends
derived from measurements of polvgonal wall scarps; the
composite azimuth-frequency diagram for this region is
presented in Figure 18. As this diagram includes struc-
tures of unrelated lengths (polyvgonal crater wall scarps
are related to their parent crater diameters; regional
structures are independent of crater diameter),‘no com-
posite total length-azzimuth plot was produced. 1In order
to compare data on pclygonal crater wall scarps and
regional structures separately, however, azimuth-frequency
and length-fregquency diagrams for these are given in Fig-
ures 19 anéd 20, respectively.

Several main trend directions are suggested in the
composite plot (see Figure 18). Possible regional trends,
as inferred from Figure 20, are N62W, N48W, N32W, and

N2-6E; although the statistics are poor for non-crater



Fig. 18. Composite azimuth-frequency diagram for a
portion of the Iapygia Quadrangle (MC-21). 1Included are
data from polygonal crater wall scarps and non-crater
structures. Radial scale has been doubled to improve

clarity; data derived from Viking Orbiter frames 625A01

to A0S8.
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Fig. 19. Trends of polygonal crater wall scarps in
MC-21. Radial scale has been doubled; Viking Orbiter

frames 625A01 to AQS.

a. Azimuth-freguency distribution

b. Crater diameter-azimuth distribution
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Fig. 20. Trends of non-crater structures in MC-21.
Radial scale has been doubled; Viking Orbiter frames

625301 to AO08.

a. Azimuth-frequency distribution

b. Total length-azimuth distribution
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structures, a coincidence of crater- and non-crater-derived
trends near N32W seems possible.

As this region lies between the Hellas and Isidis
basins, crustal structure is probably complex, and com-
ponents of some larger structural pattern are probably
less clearly indicated. The data do, however, provide
some information on at least the local structure of the

area.

Potential Biases

When a few trends in a rose diagrém adjoin, the human
eye is drawn preferentially to them; the possibility then
exists that numerically significant but isolated trends
might be overlooked or de-emphasized. Another bias is
introduced during compilation of tﬁe data for the diagram.
Trends of north-south and east-west do not fit into any
5° bin; consequently, they were assigned to the adjacent
eastern bin (e.g., N90W added to N85-89W; NOE to N1-5E).

As only the most obvious structural features were
documented in this study, many more subtle structures
were probably missed. 1In some areas (e.g., Memnonia),
subdued graben-like troughs locally parallel the trends
of Tharsis-related graben; such subdued features were
excluded from this study. As the number of such features
was small, the error introduced is relatively minor. 1In

other areas of extensive lava plains (e.g., Aeolis),
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many structﬁres were undoubtedly concealed; however, it
is possible that some rather linear lava flow front scarps
wére includeé in the statistics; if so, they should con-
tribute to scatter.

ﬁone of these potential biases significantly affect
the detection of prominent regional structural trends.
The regional rose diagrams are thus reasonably reliable

estimates ©f structural trends in the gquadrangles studied.

Summary

Generalized azimuth-frequency diagrams for each area
studied were plotted on the coverage map of Figure 2 and
are presentec here in Figure 21. Individual trends vary
widely from location to location; very few trends can
be continucusly traced with confidence through more than
two study areas. Comparison of these trends with the
principal stress trajectories of Banerdt et al. [1981]
reveals very little correlation; the trends appear too
variable to resul: from imposition of such a single stress
field. It was hooed thet the representation of structural
trends in such a oanner might‘suggest some systematic
variations with lztixtude and lcngitude, distance from
Tharsis, the planetary cdichotomy boundary, or major impact
basins; nore cZ these seems unambiguously to be the case.
Rose dizgrem comparisons such as these appear to be of

-

limited usefucliness in evaluating regional trends from
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Fig. 21. Azimuth-freguency distributions for struc-

tural features in the heavily cratered terrain.
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measurements of rather isolated structural features.
Consequently, the regional rose diagrams were used

to identify prominent regiqnal trends; these trends were

then replotted on stereographic projections of Mars.

This method has the advantage of combining a large portion

of the original data into single plots covering the entiré

planetary surface, without significant distqrtion.

Following brief reviews of previous work, principal stress

directions oh a sphere, and stereonet techniques, the

method and its results will be presented.
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SYNTHESIS AND TECTONIC ANALYSIS

Previous Work

Deformation of planetary crusts occurs as a response
to the stresses imposed upon them. If brittle fracture
occurs, it may be possible to infer the orientations of
the maximum and minimum principal stresses. This has
been useé successfully on Earth [Anderson, 1951; Hafner;
1951; Engelcder and Geiser, 1980] and has met with some
success on Mercury [Melosh and Dzurisin, 1978}, the Moon
[Melosh and McKinnon, 1978; Golombek, 1979], and Mars
[Carr, 1974; Wise et 2l., 1979; Phillips and Lambeck,

1980; Banerct et al., 1982].

The approach adopted here was to extend the dynamic
classification of faults developed by Anderson {[1951] to
planetary scale problems. This technique can bé applied to
tectonic problems on any planet (or satellite) whose outer
crust deforz=s by brittle failure near the surface and is
not excessively mobile (the "one—plate" planets of Solomon,
1678). In orirnciple, it is possible to preserve evidence of
tectonic activity that occurred very early in a planet's
history; the ccmplicetion, however, is that results of
subseguent events may also be preserved. Although studies
of fault-trends have been performed for portions of

Mars {[Meassoz, 1977; Frey, 1979), to date such studies
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have not addressed early global tectonism or the forma-

tion of the planetary dichotomy boundary.

Stress and Faulting on a Globe

In this study, the maximum principal stress, 0:,
will be taken to be compressive; the minimum principal
stress, o3, will be taken to be tensile. Using this conven-
tion and given the condition that one of the three mutually
perpendicular principal stresses must be vertical, the
orientations of the principal stresses to the resulting
principal planes of faulting can be specified. Central to
Anderson's [1951] classification of faults is the assump-
tion of one vertical principal stress. For normal faults,
this stress is equal to the overburden pressure. As this
parallels the gravitational acceleration vector, this
vertical principal stress parallels the line directed
radially outward from the center of mass of the planet
through the piece of rock being stressed. It is apparent,
then, that for normal fault-producing stresses, o; will
be radial to the planet's center, and the intermediate
and minimum principal stresses will be perpendicular to
this and thus tangent to the surface of the planet.

For normal fauliing, the maximum principal stress is
parallel to the gravitational acceleration vector, and

the intermediate and minimum principal stresses are
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tangential to the surface being deformed; faulting may
occur along either of the two principal planes for uniform,
homogeneous rock. Anisotropies will alter this somewhat,
but on a planetary scale it is found that the effect of
these irregularities seems small compared to the scale
of the deformation.

A total of 890 structures were measured in this study.
Of these, scarps constituted 61%; graben, 16%; channel
wall scérps,‘Q%; polygonal crater wall scarps, 8%; and
ridges, 6%. Very little evidence of strike-slip movement
was observed for any of these structures. Many show evi-
dence of differential vertical motion, and the majority of
the structures studied are inferred to reflect dominantly
vertical motion. It is thought that this motion resulted
from normel faulting, as the structures locally parallel
and grade into one another; this interpretation is not
necessarily conclusive, however, and local high-angle
reverse faulting is not ruled out.

Principal stress directions and potential fault planes
for normal, reverse, and strike-slip faulting are shown
in Figure 22 (a, c, and e after Hobbs et al., 1976, p. 329).
It is emphasized that the stress poles described here need
not coincide with the geographical poles of the planet:
the stress trajectories may rotate to any position to
match planetary structural trends. It is interesting also

that the only stress spheroid with uniquely defined axes
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Fig. 22. Stress trajectories and faulting on local
and planetary scales are illustrated for the three common
fault types. For local stresses (Figures 22 a, c, and e),
one principal stress direction is vertical. This vertical
stress follows the gravitational acceleration vector and is
radial to the planet's cenrter, thus defining a planetary
stress system based on near-surface stress directions.

Stress poles need not coincide with geographic poles.

a. Local stresses resulting in normal faulting

b. Planetary stresses resulting in normal fault-
ing

c. Local stresses resulting in strike-slip
faulting

d. Plznetary stresses resulting in a zone of
conjugate shear fractures. Lateral diéplace-
ment can occur when o; is equatorially
directed.

e. Loczl stresses resulting in reverse or thrust

faulting

th

Plenetary stresses resulting in a zone of

reverse or thrust faulting
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is that for normal faulting; for the other cases, even
though the radial (i.e., local vertical) principal stress
direction is fixed, directions of the other two can vary
between the pole and equator. Reconsideration of faults
as "radial" or "tangential" follows the ideas originally
formulated by Suess in 1885 (see Suess, 1904).

It can be seen that the trends of normal faults and
graben produced from these stresses will be parallel
to the "streés equator," that is, o,. This is analogous
t0 uniaxial tension directed along the o3 axis. The
stress spherqid for strike-slip faulting would produce
conjugate sets of fractures; no relative motion across
these fractures would occur if ¢j; were equatorial, but
significant lateral displacement will occur along these
fractures if the maximum principal stress (o)) were par-
allel to the eguator. Assuming the stress poles coincide
with the planet's poles of rotation, an analogous stress
state might be imposed on a planet through a change in its
rotation rate (e.c., the iidal despinning concept of Melosh,
1977). If the intermediate and maximum principal stress
directions are tangential to the surface of the planet
and o; is vertical, thrust faulting may occur; this stress
condition could be met by planetary contraction (Melosh,
1977].

In order to evaluate whether planetary stress systems

similar to these have been active on & planet, it is useful
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to plot the major structural trends on stereographic pro-
jeétions. This has been done for the trends identified

in the regional rose diagrams for structures in the heavily
cratered terrain of Mars. Before discussing these results,
however, a review of stereonet concepts and procedural
methods will be presented.

Review of Stereonet Concepts
and Applications

Stereogfaphic projections, commonly referred to as
stereonets, are graphic representations of a sphere that
allow problems in three-dimensional geometry to be manip-
ulated and solved on a two-dimensional sheet of paper.
These projections can be thought of as being roughly
analogous to an image of a globe, complete with lines of
longitude and latitude, traced onto a flat surface. Dis-
cussion of technicues and applications of the stereonet
can be founé in Ragar [1973] and Hobbs et al. [1976].

As the stereogrephic projection.represents a sphere,
two hemispheres are superimposed on the net. The lower
hemisphere is most ccmmonly used in structural geology,
whereas the upper hernisphere is primarily used in miner-
alogy (see Phillips, 1960); the choice is arbitrary and
is selected according to the needs of the particular prob-
lem being studied. Structurzl data plotted on the upper
and lower hemispheres are usually symmetric; while not

true for plotting fault planes, symmetry is an asset,
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for example, when plotting the poles to crystal faces.
Stereonets have the property of representing planes
in space as (curved) lines on the net, and lines in space
as points on the net. 1In addition, the orientation and
position of any plane, when plotted as a great circle,
can be specified by a single point, the pole. Small
circles can be specified by their center points and the
nradius" of the circle. A pole is the normal to the plane,
passing from the center of the sphere through its surface;
the point at which the normal pierces the sphere is pro-
jected onto the stereonet as a point. As both hemispheres
of the net are symmetric, the normal to the plane pierces
both the upper and lower hemispheres, resulting in two
poles, 180° apart, either one of which is 90° from the
plane; either one of these poles by itself can specify
the attitude of the plane. The technique of plotting
poles to planes instead of the planes themselves results
in a great simplification of three-dimensional geometric
problems and has the additional advantage of generating
patterns on the resulting pole plot. In many cases,
complicated deformational structures, when plotted in this
feshion, can be isoleted and readily identified by some
recognizable pattern of poles on the stereonet. Thus,
complex spatial relationships between planes can be
analvzed with greater efficiency through the patterns

generated with this technique.
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Two types of stereographic projections are commonly
used in structural geology: the Wulff net and the Schmidt
equal area net. The Wulff net)is an equiangular projec-
tion, whereas Schmidt nets conserve area. The property of
having constaht area per unit distance on a Schmidt net
is useful for analyzing clusters of poles for diagnostic
pétterns. When poles to planes are plotted on an equal
area net, a contour diagram can be constructed to reveal
regions.of méximum and minimum density of points (see
Ragan, 1973, pp. 112-114). The maxima derived from con-
touring can produce the patterns characteristic of speéific
types of deformation, such as folding about an axis or
the development of planar fabric in rocks.

Faults in terrestrial situations are represented on
a stereonet as great circles, defined by their azimuth
in degrees from north ahd their dip, measured down from
the horizontal. The direction of movement relative to
reference points defines the type of displadement along
a fault. Normal faulting, for example, involves downward
motion relative to the local vertical, commonly taken
as the gravitational acceleration vector and, hence, the
maximum principal stress. By definition, the trend of
a no:mal fault or graben locally follows the direction
of the intermediate principal stress (o0,); the fault plane
thus defined begins in the planet's outer crust parallel

to o and can be thought of as extending radially inward
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to the center of the planet. This argumént can also be
applied to strike-slip and reverse faulting. Thus, any
fault with a measurable strike represents a portion of
some great circle that locally follows the strike of the
fault, and that passes through the center of the planet.
As such a plane can be represented on a stereonet by
either one of its poles, any structural trend on a planet,
in defining a great circle, can be plotted on a stereonet
as a péint..

Lines of longitude and latitude on a globe can be
thought of as being analogous to greét and small circles
on a Wulff or Schmidt net. The similarity between plane-
tary position, with coordinates in latitude and longitude,
and poles to planes on a stereonet can be exploited, in
that structural trends of widely separated locations on
a planet might be compared and analyzed at a planetary
scale using such a net.

Two types of diagrams can be used to analyze a system
of great circle trends: beta-diagrams and pi-diagrams.
Beta-diagrams involve the plotting of all great circles
on a single equal area net, and are interpreted after
construction of & contour diagram of the resulting great
circle intersections. 1Inherent in a construction of this
type are several sources of significant error. The entire
great circle must be plotted to great accuracy, and the

point of intersection of two similarly trending great
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circles (i.e., * 10° in azimuth) cannot be precisely
located. As the number of intersections increases much
faster than the total number of great circles plotted,
a false sense of confidence can result, in that many of
the intersections are artifacts of the plotting process.
Spurious numbers of intersections, leading to spurious
maxima, can often result as a byproduct of the "artificial®
intersections.

An.altefnative method of analyzing a large number
of structural trends is that of the pi-diagram. Instead
of drawing the entire great circle, only its pole is
recorded on the stereonet. This greatly reduces clutter,
spurious concentrations, and plotting error while increas-
ing the clarity of any resulting patterns and clusterings
of points. Further, the method is flexible, in that,
given one pole, both the opposite pole and the parent
plane can be determined with great rapidity and accuracy.
Thus, pi-diacrams represent a more efficient way of simul-
taneocusly analyzing a large number of structural trends

on a global scale.

Methodology

Rose diagrams for each of the regions studied were
used to identify prominent structural trends. Of the
890 total structures mapped in the heavily cratered ter-
rain, 603 were members of 43 well defined trends and were
selected for analysis on a stereonet.
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One Schmidt equal area net was used to plot the poles
of structures whose trends were close to the maxima defined
£rom the 21 rose diagrams. The 43 principal structural
trends plotted using this technigue are given in Table 1;
the 9 marked by an asterisk contained too few members
(s 3) to plot, leaving 34 usable trends.

For each structural trend, the data on latitude,
longitude, and strike were taken for each of the structures
whose strikes were comparable to the mean trend. As the
prominent trends were grouped in 5° boxes, there were
usually enough data for each trend to give a meaningful
pattern on the stereonet. The data for each trend were
plotted as follows: each Schmidt net was centered at
Mars geographical coordinates 0° latitude, 360° longitude;
the conceptual upper hemisphere of the stereonet was used
to simulate this hemisphere of Mars more fealistically.

The latitude and longitude of each structure were located
on the net to the nearest degree, and an "x" was centered
on this point. To include the strike on such a projection,
the transparent overlay on which these points were located
was rotated the appropriate number of degrees of strike;
the "x" then represented a point on the nearest underlying
great circle. Having defined the great circle for this
structure, the upper hemisphere pole was determined by
counting off 90° along the equator and marked by a point;

the overlay was then rotated back into its original
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position, the "x" erased, and the next datum plotted.

Once all the data for each trend were plotted, the result-
ing groupings were contoured on a separate overlay using

a Kalsbeek counting net (see Ragan, 1973).

It was found that the poles to most of the trends
identified in the rose diagrams formed rather tight
clusters; three pi-diagrams produced significant scatter
and are queried in Table 1: these were not used in subse-
quent analysés. Using the contoured pi-diagrams, one
best-fit pole was selected for each of the 31 structural
trends that produced compact clusterings; this pole and
its projection in the opposite hemisphere, the parent
structural trend identified in the rose diagrams, and
+he number of structures contained in each diagram are
listed in Table 2. These derived data comprise the docu-
mented poles to the best defined structural trends in
each of the regions studied in the heavily cratered ter-
rain, and form the bazsis for subsequent diagrams and

analyses.

Results

All of the 62 derived best-fit poles (31 on each of
the two hemispheres) to the measured regional structural
trends were plotted the upper hemisphere of another Schmidt
ecual area net, centered at martian coordinates, 0,360.

This diagram is shown in Figure 23a; note that filled
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TABLE 2. Best-fit Poles to Prominent Structural Trends
in the Heavily Cratered Terrain of Mars
MC Quad Trend Lat., Long. Lat., Long. n
16 N8OW 64,146 -64,326 13
i6 N6OW 63,94 -63,274 6
16 N4OW 40,90 -40,270 6
16 N17W 14,68 -14,248 21
16 N2wW 0,240 0,60 43
16 N12E 8,239 -8,59 22
16 N30E 22,226 -22,46 20
19 N78wW 50,344 -50,164 32
19 N62W 46,326 -46,146 11
19 N42wW 38,298 -38,118 23
19 N18w 17,299 -17,119 12
19 N12E 10,112 -10,292 25
19 N28E 22,112 -22,292 33
12 N72W 55,210 -55,30 15
12 N62W 56,230 -56,50 16
12 N45w 42,240 -42,60 33
12 N30OW 26,246 -26,66 30
12 N17W 12,246 -12,66 36
12 N42E 42,90 ~42,270 14
12 N58E 58,100 -58,280 10
5 N42W 30,212 -30,32 24
5 N1low 18,220 -18,40 35
20 N32E 24,44 -24,224 10
20 N57E 42,32 -42,212
20 N82E 58,16 -58,196
23 N82w 68,158 -68,338
23 N66W 54,150 -54,330
23 N50W 40,130 -40,310 11
23 N38W 38,120 -38,300 6
23 N6E 4,292 -4,112 13
23 N22E 21,272 -21,92 17
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symbols represent poles plotting on the upper hemisphere
of the net, whereas open symbols represent poles on the
lower hemisphere. The absence of points near the center
of the net and the regular, symmetrical distribution of
points about the center is striking; their pattern can
be enhanced by contouring the points as in Figure 23b.

The pi-diagrams presented in Figure 23 suggest a
unifying pattern to the poles of prominent structural
trends in the heavily cratered terrain. These poles define
a pair of small circles, one on each of the upper and
lower hemispheres of the net, which are superimposed here
as a byproduct of the plotting process. The composite
small circle shown in Figure 23 has a statistical center
near 0,360 and a radius of 60 + 10°.

In order to represent these small circles in a form
perhaps more familiar to geoclogists, the derived poles
were also plotted on a Schmidt net centered at 0,270;
this results in a S0° westward rotation of the small
circles while preserving their coordinates on the planet.
This new projection is shown as poles in Figure 24a and
as contoured data in Figure 24b. Note that the two small
circles can be resolved using this projection: they lie
a2t opposite sides of the net and have geometric centers
near -8,360 ard 8,180. 1In this projection, an additional
concentration of poles trends north-south along the 270°

{znd 90°) meridian.
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The 0,360 projection of the small circle zones does
not precisely resolve the centers of the zones. Shiffing
fhe center of the projection from 0,360 to 0,270 reveals
that the small circle geometric centers are located at
+ 8° from the "equator." This new projection is thus
used to resolve the north-south components of the small
circle centers. Any east-west components, however, are
not resolved; when the data are replotted on a polar
étereographic projection, these components can be found.
The geometric centers ofbthe visually determined best-fit
small circles to the pole data, based on all three projec-
tions, are located at -8,356 and 8,176.

Although the physical meaning of great circles is
familiar toc geologists, the concept of "small circle tec-
tonics” may seem somewhat unconventional. Tectonic
activity that leads to small circle traces is common én
planetary surfaces, however. Very large impact basins,
for example, directly affect a large portion of the surface
o a planet. The outer rim of such a basin generally
defines a circle in planimetric view and an arc in cross
section; this arc would plot on a stereonet as a small
circle, assuming the center of the basin lies on the
primitive.

Perhaps a more familiar example is that of terrestrial
subduction zbnes. The subducting lithosphere is planar;

the arcuate shape of the associated trench results from
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Fig. 23. Pi-diagrams of poles to structural trends,
centered at 0,360; upper hemisphere of Schmidt equal area
net. Filled symbols‘denote poles plotting on the upper
hemisphere; open symbols, lower hemisphere poles. The
poles define a zone approximating a small circle, with a

geometric center near 0,360 and radius of 60 * 10°.

a. Pi-diagram of derived poles

b. Contour diagram of Ficure 23a data
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Fig. 24. Pi-diagrams of polés to structural trends,
centered at 0,270; upper hemisphere of Schmidt Egual Area
Net. These diagrams represent a 90° westward rotation of
the projection shown in Figure 23, using the same data.
Note resolution of the zone into two small circle traces,

and a2 medial north-south-trending cluster of points.

a. Pi-cdiegram of derived poles

b. Ccatour diagram of Figure 24a data; geo-
me:ric centers of small circles lie near

-8,36) and 8,180.
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the intersection of this plane with the curved surface of
the Earth [Frank, 1968]. As these planes can be projected
through only a portion of the globe, they form arc segments
of small circles and can be plotted as such on a stereonet.
It is significant here that the center of this small
circle, defined by the arcuate trace of a subducting planar
lithosphere, has little physical meaning aside from serving
to locate the small circle on the planet, using geograph-
ical coordinétes. In the previous example of an impact
basin, the center corresponded to the physical center of
the basin. Thus, in considering "small circle tectonics,"
the center may or may not be physically significant; the
important activity is marked by the small circle zone.

One final example will be presented here, that of the
lzrge-scale movement of lithospheric plates on the Earth.
Although termed "plate tectonics," the lithosphere behaves
more like "spherical caps" on a sphere (see Hobbs et al.,
1976, pp. 447-457); relative motion between plates (as
inferred from patterns of transform faults) can be specified
by movement along small circles; i.e., by an angular dis-
placement around an Euler pole of rotation. Here, the
center of the small circle (the Euler pole) is a derived
quantity and may not physically exist.

Undoubtedly, other examples could be cited; it is
thus not unrealistic to postulate some tectonic process

that gives rise to a pattern of small circles. As with
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studies of ocean trenches and mountain belts in the last
century, & pattern of structures must first be recognized

' before possible modes of origin can be explored.
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DISCUSSION

The small circles recognized in the pi-diagrams of
Figures 23 and 24 have been plotted on the Scott and Carr
[1978] geologic mep of Mars. As most of the poles fall
within 10° of z best-fit small circle, this 20°-wide
circular zone was plotted in Figure 25 for both small
circles; these zones are elongate in the north-south direc-
tion because of the distortions inherent in the Mercator
projéction of the geological base map.

A strong correspondence between the location of the
small circle’zones on the planet and the sites of major
volcanism can be seen in Figure 25. Plains-forming
volcanism, such as that of Lunae Planum, the Tempe Plateau,
Alba, Tharsis, Syrtis Major Planitia, Hellas, and Hesperia
Planum and, to a lesser extent, constructional Volcanism
&s in Alba, Thersis, and Tyrrhenia Patera, appears spa-
tially related to the position of these small circle zones.
The inferred volcenic pleins of Schiaparelli and Elysium
dec not fall within either small circle zone; the position
0Z these volcanic recgions mey be due to something other
than the global pattern defined here.

In adcditicn to these primery units, several areas of
mcdiZied, heavily cratered terrain appear to be associated
with the small circle zones. One is Tempe Plateau. Its

easternmost reaches &are characterized by heavy modification

104




of plateau materials; this portion of the plateau is near
one of the two small circle zones. The western margin

of the plateau is similarly disrupted; one section of

the northerly-trending medial zone of poles is located
near this area.

The most widespread and intense activity associated
with these small circle zones is in the areas where the
zones converge. The best example of this is Tharsis;
the activity‘at Hesperia, Syrtis Major, and the east-Hellas
surficial modification are also notable. The volcanic
plains southwest of Hellas seem somewhat anomalous,
although the locations of the inferred calderas and the
general direction of volcanic plains correspond very well
to that of the associated small circle.

The poles to structural trends in the heavily cratered
terrain represent centers of regional deformation: no
single planet-wide stress system seems capable of producing
the observed structural trends. The poles to these trends,
however, are rather uniformly distributed within well
defined small circle zones, comprising 44% of the surface
area of Mars.

It is suggested here that these small circle zones
represent statistical loci of tectonic activity that
affected much of the martian crust in a systematic way.

As the relative ages of measured structures in the heavily

cratered terrein seem in general to predate the emplacement
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Fig. 25. Global small circle zones of tectonic
activity are superimposed on a Mercator projection of
Mars geology, from Scott and Carr [1978]. Note the appar-
ent localization of major plains-forming and constructional

volcanism along the zones.
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of the Lunae Planum-aged volcanic plains, as well as the
structural and volcanic activity near Tharsis, these small
circle zones and associated pole groups are thought to
reflect a global organization of volcanic and tectonic
activity that was developed early in martian history.

This apparent global organization seems to have controlled
the development of plains and constructional volcanism
and may have contributed'to the formation of portions of
the frétted ferrain.

The region of knobby terrain east of Hellas basin
exhibits evidence of extensive modification of surface
materials ([Sguyres, 1979]. This area is alsoc associated
with one of the southerly-trending medial zones of poles
identified in Figure 24. A third region of intensely
modified surface materials is Deuteronilus Mensae. This is
the "type area" of fretted terrain of Sharp [1973] and is
perhaps the most heavily modified portion of the planetary
dichotomy boundary; it also seems to be associated with
one of the small circle zones.

As the inferred tectonic pattern is uniformly globally
defined, some other mechanism must have combined with
this to create the asymmetries of the current martian
crust. One of these asymmetries is the concentration of
tectonic activity near the convergence of the two small
circle zones near the present location of Tharsis; the

other principel asymnetry seems to predate the Tharsis
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localization: that of the formation of the planetary
dichotomy boundary.

Activity in the vicinity of Tharsis seems to have
largely obliterated or obscured the planetary dichotomy
boundary in that area. Portions of the dichotomy boundary
that appear the least obscured lie in the Nilosyrtis and
Aeolis regions. Coordinates of the northernmost extent
of the heavily cratered ferrain for Nilosyrtis and
AeoliSFMensaé were plotted on a Schmidt Equal Area Net;
the trends of these coordinates lie on a well defined
small circle, which is shown in Figure 26, and centered at
66,180. There is also a possible small circle with a
center at -66,360, symmetric to the dichotomy boundary
small circle.

These hypothetical small circles have been superim-
posed onto a Mercator geologic map showing the global

tectonic small circle zones, and are presented in Fig-

ure 27. The northern small circle is the best approximation

of the present position of the planetary dichotomy
boundary, based on the results of this research; the
southern small circle is derived from symmetry arguments
on the stereonet. Several important relationships between
the best-fit small circles and global geology are apparent
in Figure 27. Prominent structural trends seem to
parallel the trace of the northern smali circle, including

the Aeolis, Nepenthes, and Nilosyrtis Mensae. Kasai Vallis
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Fig. 26. The best-fit curve to the planetary di-
chotomy boundary is a small circle centered at 66,180. A
corresponding small circle is centered at -66,360. Schmidt
Equal Area Net, upper heﬁisphere; projection centered at

0,270.
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Fig. 27. Best-fit small circle to the planetary
dichotomy boundary plotted on Mercator projection of mar-
tian geology. Note the correlation of volcanic and

structural features.
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and the broad trough adjacent and to the north, which
separates Tempe Plateau from the Lunae Planum to the south,
also parallel this small circle. The trends of the older
Tharsis volcanos, including Ceraunius Tholus and Uranius,
Biblis, and Ulysses Paterae and, to a lesser extent, the
general northeast-southwest trends of the Mareotis, Tempe,
and Memnonia Fossae near Tharsis all seem to be aligned
along this small circle. 1In addition, the position of
the possible.ash flow tuffs [Malin, 1979; Scott and
Tanaka, 1982] in Memnonia and Aeolis seem to parallel
this trend.

The southern small circle also mirrors trends in the
southern heavily cratered terrain, although these are
less pronounced than those to the north. The main activity
located along this small circle is the volcanism east of
Hellas (Hadriaca Patera) and that associated with
Huygens and Schiaparelli; in addition, the trend of trough
and furrow terrain, as mapped by McCauley [1978), tends
to lie along this small circle. The most noticeable,
perhaps, is the change in trend of the Valles Marineris
as they pass from Lunae Planum into the heavily cratered
terrain to the east; the abrupt shift from WNW to NE trends
might reflect some contribution of the southern small
circle to visible structural trends.

Recall that the poles to structures such as those

near Valles Marineris defined the original small circle
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zones; 1if these structures also parallel another small
circle, thern there may be a strong linkage between the

two. 1Indeed, the poles to the oldest graben in MC-19
(N78W) lie southwest of Tharsis and in Deuteronilus Mensae:
the global small circle zones and the planetary dichotomy
boundary small circles intersect in both these areas.

In zddition, when the centers of the dichotomy boundary
small circles are plcited on Figure 27, they lie within one
of the globeal small circle zones.

It seens possible, then, that tectonism along the
plarnetary dichotomy bouncdary small circles was perhaps the
earliest manifestation of activity that was organized
accorcding to the ¢lobzl small circle zones; this phase of
activity mostly resulted in mechanical deformation of the
crast, and was most intense in the north. The other major
phase of aciivity involved the extrusion of extensive
velcanic plains along the traces of the global small circle
zcnes; this was Zcllowed by more localized activity,
especieally near Thaumasia and Tharsis, and in structural
cenatrol of landform mocdilication, as of the fretted terrain

in Deutercnilus Mensae.
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SUMMARY AND CONCLUSIONS

Studies of structural trends in the heavily cratered
terrain of Mars provide important information and insight
into the distribution, relative timing, and intensity
of crustal deformetion on a global scale. The technique
employed here involved measurements of the locations and
and trends of structural features; these were compiled
into rose diagrams on a region-by-region basis in order
to isolate prominant structural trends. The best-fit
poles to these trends were then determined and plotted
on a stereocraphic projection that enabled the points
plotted on the stereonet to correspond directly to plan-
etary coordinate positions. The pattern of poles using
this procedure revealed a set of small circles on the
stereonet; these were then transferred to theirhcorre-
spondinc positions on the planet.

tructural trenés within the heavily cratered terrain
are the result of recionzl deformation of the crust: no
single clobz2l stress system (e.g., Tharsis loading or
fiexure) is incéicateé. The certers of deformation are
scatially relazed on a globzl scale by a set of well
defined smell circle zones, which are associated with
mejor structurel and volcanic terrains. These global small
circle zones rrobably reZlect an early, fundamental pattern

in the martian crust. Activity was principally expressed
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as brittle, structureal deformation of the crust, and was
asymmetrically disposed. The most intense activity
occurred in the north and produced the planetary dichotomy
boundary, and may have contributed to the NE-SW elongation
of the later Tharsis-related graben. Later activity was
primarily thermal and resulted in the extrusion of Lunae
Planum-age volcanic plains along the trends of the small
circle zones, in addition to local faulting. Like the
previous episoce, this activity was also asymmetrically
distributed; the most intense activity occurred in the
region now known as Tha;sis. Structures such as the
Tharsis-relateé radial graben and the Valles Marineris
probably resulted from regional stresses that were later
superimposed upon this global system.

Substantial problems remain to be solved. This model
does not address the localization of volcanism at Elysium
or at Olympus Mons; nor does it account for the trends of
t+he Tharsis Montes and the Claritas Fossae crustal block,
or the Phlegra Montes. Further, models cf crustal defor-
mation resulting from Tharsis-induced loading stresses
should perhzps adéress the potentially troublesome problem
of a crust with strorng preexisting structural trends and
zcnes of wezkness. These cbservations do suggest, however,
that many recicnal structures within the heavily cratered

terrzin develcped as 2 consequence of global tectonic
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CIRCULAR AND AN IRREGULAR LUNAR MARE
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Abstract of A Comparison of the Origin and Evolution of a circ-

ular and an irreqular lunar mare by James Leslie Whitford-Stark,

Ph.D., Brown University, June 1980.

Five related studies of the origin and evolution of lunar
maria are presented. They all relate photogeologic and remote-
sensing studies and are summarized as follows:-

1) The stratigraphy and eruption styles of basalts within Oceanus
Procellarum are outlined. Four major volcanic phases were identif-
ied: The Repsold Formation(3.75 + 0.5 b.y.) of titanium-rich
basalts confined to the surface of northwest Procellarum ( but
probably underlying most of the mare) and occuring as dark mantle
deposits around Sinus Aestuum. The Telemann Formation(3.6 1_0.2 b.y.
) of probably V.L.T. basalts occuring at the Aristarchus Plateau,
northern Procellarum, and as scattered outcrops in the southeast.
The Hermann Formation(3.3 + 0.3 b.y.) of intermediate basalts
occupying large areas of central and southeast Procellarum. Finally
the Sharp Formation(2.7 + 0.7 b.y.) of titanium-rich basalts
preferentially erupted from vents at the mare/highland boundary.

These basalts cover 1,700,000 km2, average 550 m in thickness, and

6 km3. Three large wvolcanic

have an estimated volume of 0.87 x 10
complexes (Rumker Hills, Aristarchus Plateéu, Marius Hills) were
sources for many of the basalts.

2) Oceanus Procellarum is hypothesized to have formed as a large
sector graben consequent to the Imbrium basin-forming event. The
origin of floor-fractured craters and graben are shown to be
related to the thickness of mare fill. Graben formation terminated
at 3.3 + 0.3 b.y. while mare ridge production took place from at

least the time of eruption of the Telemann Formation(3.6 * 0.2 b.y.

) till after the deposition of the youngest basalt. Positive

M
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gravity anomalies are shown to be associated with Rima Sirsalis -

a major tectonic feature of the lunar surface - and the young
Shafp Formation basalts.

3) The filling of the ancient 900 km diameter, circular Australe
basin is described. Four major episodes of basalt eruption

ranging in age from early Imbrian to Eratosthenian were recognized

These basalts cover an area of 320,000 kmz, average about 750 m

in thickness, and have a total volume of approximately 0.24 x 106

km3. Flood-style eruptions were from at least 197 vents on crater
floors. The youngest basalts occur in an annulus near the outer
basin edge. North-south aligned mare ridges are present but there
are no graben; The multi-ring basin morphology of Australe is
reflected by basalt thickness variations. Extra-basin craters and
basins contributed a substantial portion of the basin fill.

4) The evolution and basalt fill of the young, multi-ringed
Imbrium basin is described. Ten major units, separable in age

and chemistry have been defined., Surface basalts range in age
from 3.75 + 0.05 to 2.5 + 0.3 b.y. and in chemistry from VLT to

2 of surface basalts form a small

6

titanium-rich. The 850,000 km
part of the total Imbrium basin £ill estimated at 2.2 x 10 km3.
Mare ridge production took place from at least 3.5 + 0.25 b.y.
to less than 3.0 b.y. ago, while graben production terminated

at 3.3 + 0.3 b.y. ago.

5) A comparison of the origin and evolution of a circular and




irregular lunar mare is made based on the results described ih

the previous four papers. Data obtained from landing sites and

other maria are combined with the photogeologic and remote-sensing
analyses to decipher the histories of lunar maria. Eruptions of
dissimilar composition were found to have taken place synchronous-
ly both within and between maria. The tectonic evolution of Imbrium
and Procellarum was found to be similar except in the distribution
of the deformed products. Currently available petrogenetic models

for basalts were found to be inadequate.
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PREFACE

Introduction: The aquisition of remote-sensing data from

lunar orbit, the refinement of earth-based techniques, and the

raturn of lunar samples has led to an unprecedented increase in

our knowledge of the Moon in the last 15 years. This thesis

represents an attempt to synthesize remote-sensing, sample, and

photogeologic information in order to decipher the mode and
nature of the basalt filling of the lunar maria. In particular,

it emphasizes the similarities and differences between the origins

and basalt-filling: sequences of a circular and an irreqular mare;
the former represented by Mare Imbrium and the latter by Oceanus
Procellarum. |
The five papers are presented in a chronologic order with

respect to the time at which the data-gathering for each was

completed. The reader may thereby be able to trace the development

of the author's thinking on the subject. Three of the papers were

written in collaboration with my thesis advisor, James W, Head III,

who contributed to the final organization of the manuscripts and

offered many ideas as to their content. The data-gathering and

much of the content was, however, the product of the author.

The first paper, following the guidelines of the American

Commission on Stratigraphic Nomenclature, defines the filling

sequénce of Oceanus Procellarum. The second paper describes the

tectonic evolution of that mare. Paper 3 changes to a description

of the fill of a very degraded multi-ring basin; Australe, Paper

4 defines the filling sequence of the youthful, multi-ringed

Imbrium basin where, unlike Australe, basalt eruption appears to

have closely followed the basin-forming event. The final paper -
1 3 L



compares the information from the previous four and incorporates
the work of other lunar scientists in an attempt to define the
major characteristics of the evolution of lunar maria. The main
conclusions are that basin-filling by basalts was considerably
more complex than was envisaéed as little as five years ago but
that tectonic processes were simply related to the basin fill and

lithosphere thicknesses.

Papers 1 and 3 were previously published and cannot be
reprinted in this publication. However, the titles and abstracts

are included to present a continuum.
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Abstract

The basalts within Oceanus Procellarum have been named the
Oceanus Procellarum Group and subdivided into four major geol-
ogic units on the basis of morphology, spectral reflectance,
and other remote sensing information in order to develop a
framework of regional stratigraphy for the largest lunar mare.
The oldest mare basalt unit identified, the Repsold Formation
(low albedo, blue color, high crater density, very weak 3.8 cm
radar backscatter, and a weak l/Jm reflectance) crops out in
NW Procellarum and may be correlative with Apollo 1l and 17 high
titanium basalts. The next youngest unit, the Telemann Formation

(red, higher albedo, high crater density, high D. values, and an

L
average to strong l/zm reflectance) extends over wide areas of

Procellarum and crops out as extensive surface units and as

local patches surrounding earlier, topographically higher, units.
Numerous large sinuous rilles in the Aristarchus Plateau were a
major source for some of these deposits. Pyroclastic deposits

forming the dark red mantle were also emplaced at the Aristarchus

Plateau during these eruptions. The Hermann Formation (intermediate

color, low albedo, intermediate crater density, and average to
strong llym reflectance) occurs as extensive plains developed
from less voluminous eruptions from sources at the Marius Hills
complex, the Rumker Hills, and in Nubium, Cognitum, and near
Delisle. The youngest unit, the Sharp Formation( very low albedo,
blue color, low crater density, and a strong l/um reflectance)

is volumetrically small and is derived primarily from vents near

the highland/mare boundary. Many Sharp Formation members have




associated sinuous rilles. Basalts of the Hermann Formation
were sampled by Apollo 12, those of the Telemann Formation
may be similar to the Luna 24 VLT basalts, while those of the
Repsold Formation may be coﬁparable with the Apollo 11,17 and
Luna 16 samples. The Sharp Formation, the youngest basalts,
remain unsampled. The total volume of Procellarum basalts is

5

estimated at 8.7 x 10 km3( about 10% of the total mare volume).

The relative volumes of the individual formations are not refl-
ected by the surface area covered because the youngest flows

tend to be thin and widespread. For example, the Sharp Formation

has a surface area of 720,000 km2

only 1.8 x 10% xm>

but an estimated volume of
while the Repsold Formation has a present
surface area of only 22,000 km2 but an estimated volume of

2.1 x lO5 km3. The vast majority of lavas in Procellarum were

extruded early in the phase of lava flooding, prior to about

3.5 b.y.
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ABSTRACT

The stratigraphy and emplacement styles of Oceanus Procellarum basalts
are briefly reviewed. Procellarum is divided into three sections, each with a
different degree of mare flooding and mare ridge pattern; the center is deeply
flooded with a central parallel ridge zone, the southeast is shallow with
reticulate ridges; and the north is intermediate with polygdnal ridges.
Gravity, magnetic and photogeologic data iﬁdicate Rima Sirsalis and its mare
extension to Tobias Mayer W to be an important tectonic feature of the lunar
surface; possibly a dike-intruded normal fault with relative downward motion
to the west. Graben formation is shown to have terminated during the emplace-
ment of the Hermann Formation basalts(3.3 + 0.3 b.y.). Basalt flooding of
circum-mare craters appears to have been more common in craters cut by graben
than those with floor fractures. Mare ridges exhibit regular offsets, are
rarely cross-cutting, were formed over a long time period(at least 0.5 b.y.),
and some post-date the deposition of the youngest basalts. Post-emplacement
basalt downwarping of the mare surface has in places reversed the original
topography and elsewhere emphasized that topography. A small positive gravity
anomaly appears to correlate with the youngest Procellarum basalts while
older units have no anomalies. The Procellarum topographic low is hypothesized
to have originated as a large sector-graben with movements on faults radial

and concentric to the Imbrium impact basin.
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1) Introduction

The lunar maria can be subdivided into regular and irregular groups.
The regular maria are approximately circular (e.g., Mare Crisium) and appear
to result from the bagsalt-infilling of large impact basins. The shape of the
irregular maria does not appear to have resulted from the simple flooding of
single basins. Oceanus Procellarum is the largest of these irregular maria,
with a surface area of about 1,700,000 kmz, and lies near the western limb
of the near side of the Moon (Figure 1).

Oceanus Procellarum has been mapped as a number of separate gquadrangles
by the U.S.Geological Survey and these maps have been combined to form part
of the geological map of the near side of the Moon (Wilhelms and McCauley,1971).
More recently, syntheses of remote-sensing data relating to Oceanus Procellarum
have been made by Pieters et al (1980) and Whitford~Stark and Head (1980).
The former deals with the detailed description of the part of Procellarum
centered on the Flamsteed area while the latter describes the stratigraphic
sequence of basalts infilling the entirety of Procellarum. The present paper
briefly reviews the stratigraphic sequence and describes and interprets the
structural development of Oceanus Procellarum by combining information

derived from photoqeological analyses, and geochemical and geophysical remote-

sensing.

2) Summary of Stratigraphy

a. Stratigraphic Units

A formal lithostratigraphy for the basaltic materials within Oceanus
Procellarum has been recently compiled (Whitford-Stark and Head4'980). The
Oceanus Procellarum Group was subdivided into four formations (Figure 2) and
a number of member units. The oldest (3.75 + 0.05 b.y.), Repsold Formation
has defining characteristics which include a blue color on combined ultraviolet-
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infrared photographs (Whitaker,1972), a very low albedo - 0.069 to 0.0793

(Pohn and Wildey,1970), and a high impact crater density. Pieters (1978)
tentatively assigned materials of the Repsold Formation the spectral charact-
eristics of the Luna 16 mare basalts, including; a medium-high ultraviolet/
visible ratio, a low albedo, and a weak lpm reflectance. The Repsold Formation
is characterized by a weak 3.8 cm radar reflectance (Zisk et al, 1974). On

the basis of age and similar spectral characteristics, the Repsold Formation
was considered (Whitford-Stark and Head,1980) to be similar to Apollo 1l and 17
high titanium basalts. The Telemann Formation which overlies the Repsold
Formation has defining characteristics which include less than 2 wt% TiO
(Johnson et al, 1977; Pieters, 1978), a red color on combined UV/IR photo-
graphs (Whitaker, 1972), a high albedo - 0.074 to 0.102 (Pohn and Wildey,1970),
an average to strong 1 pm reflectance (Pieters,1978), and a high crater density.
It is also characterized by a medium 3.8 cm radar backscatter (Zisk et al,1974)
and a low thorium content - about 2.5 ppm (Haines et al,1978). Combined crater
degradation/ density data (Boyce and Johnson,1978) indicate an age of 3.6 +

0.2 b.y. for the Telemann Formation. Both the Repsold and Telemann Formation
basalts have complementary pyroclastic materials; the former including the

blue dark mantling materials of Sinus Aestuum and the latter, the red mantling
materials of the Aristarchus Plateau. The Hermann Formation with crater degrad-
ation/ density data (Boyce and Johnson,1978) indicating an age of 3.3 + 0.3
b.y. appears to postdate the Telemann Formation. A TiO2 content of 1.0 to 5.0
wt% (after Pieters,1978) or less than 2 wt% to 6 wt% (Johnson et al,1977), a
low albedo - 0.074 to 0.085 (Pohn and Wildey,1970), a reddish-intermediate-~
bluish color on combined UV/IR photographs (Whitaker,1972), an average to
strong 1 pm reflectance (Pieters,1978), and an intermediate crater density all
serve to define the Hermann Formation. Orbital gamma-ray data suggest that

the Hermann Formation has low concentrations of K, Th, and U (Arnoid et al,1877)]
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while the 3.8 cm radar' indicates it to have a generally low backscatter (Zisk
et al,1974). The youngest basaltic materials in Procellarum are represented
by the Sharp Formation with an estimated crater degradation/density age of
2.7 + 0.7 b.y. (Boyce and Johnson,1978) though Young (1977) indicates that
parts of the Sharp Formation may be as young as 1,77 + 0.2 b.y. Defining

characteristics of the Sharp Formation include a TiO, content of 3 to 11 wt$%

2
(Johnson et al,1977; Pieters,1978), a very low albedo - 0.069 to 0.079 (Pohn
and Wildey,1970), a blue color on combined UV/IR photographs (Whitaker,1972),

a strong 1 e reflectance band where observable (Pieters,1978), a low crater
density, and, in places, topographic boundaries. Characterizing features of
the Sharp Formation include the common presence of well-defined sinuous rilles,
the presence of sharply-defined rimless pits, outlines commonly controlled

by topographic highs in the form of mare ridges, and a thorium content of
about 9 ppm (Haines et al, 1978).

There also exists the possibility of non-mare basalts underlying and
interfingering with the mare basalts. These non-mare basalts have been
correlated with the spectrally anomalous features called "red spots" and
equated with KREEP volcanism (Malin,1974) and/or other highland basalt types
(Head and McCord,1978). Some of these red spots are domed structures (Head
and McCord,1978) while others in southeast Procellarum take the form of plains
units and hummocky uplands (Wood and Head, 1975). Hawke and Head(1978) have
proposed that KREEP basalts were emplaced as extrusive materials over a time
range extendihg from prior to 4.1 b.y. ago to the period of extrusion of tﬁe

basin-filling mare basalts.

b. Distribution, thicknesses and volumes of basalts.

Table 1 and Figure 2 taken from Whitford-Stark and Head (1980) indicate

the areas occupied by each formation, their estimated average thicknesses, '
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the relative proportion of the total fill each represents, and their areal
distribution. The original surface area of each foimation was calculated
assuming that each underlies the younger basalt units. Various methods have
been employed to estimate the average thickness of each formation and other
estimates have been made by Marshall(l196l), Baldwin (1970), Neukum and Horn
(1976), De Hon (1978,79), and HBrz(1978). The basalt fill is not uniformly
thick but rather varies from feather thin at the mare/highland boundary to
several kilometers over large pre-fill craters. With an estimated average
thickness of 550 m and an area of approximately 1,700,000 kmz, the Procellarum
basalts represent nearly 9.5 % of the 10 x 106 km3 volume and 25 % of the
area of mare basalt estimated (Head,1975) to occur at the lunar surface.
Outcrops of the Repsold Formation are presently confined to the
extreme northwest of Procellarum (Figure 2) and the dark mantle materials of
Sinus Aestuum. The Telemann Formation is most extensively developed in
northern Procellarum and around the Aristarchus Plateau. In southeast
Procellarum the Telemann Formation occurs as small patches near the mare/
highland boundary and at mare ridge crests. The Hermann Formation is the most
extensive of the units occuring over most of the surface except in northern
Procellarum. The Sharp Formation occupies an extensive area of central
Procellarum and extends eastward into Mare Imbrium and southwards into the
Flamsteed region (Pieters et al,1980). In addition, the Sharp Formation was
preferentially emplaced near the Mare/highland boundary where it occurs in
a number of isolated outcrops. Although areally extensive, the Sharp Formation

is volumetrically small (Table 1).

c. Eruption Styles

The main eruptive centers within Procellarum are the three large

volcanic complexes - the Aristarchus Plateau/ Harbinger Mts. (40,000 kmz), the
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Fiqure 3

Isopleth map of the distribution of identifiable volcanie
vents within Oceanus Procellarum. The key indicates the
number of vents per 5° by 5° square.
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Marius Hills (35,000 kmz), and the Rlimker Hills (5,000 ka) ~ whose different
exruption styles have been described by Whitford-Stark and Head (1977). The
different volcanic structures within these complexes are shown in Table 2.
Figure 3 shows the distribution 6f identified volcanic centers within
Procellarum. The three complex;s are clearly demarcated but, in addition,
other concentrations can be recognized at the southern end of the Heraclides
Promontory (40 W, 35 W) and to the west of Copernicus in the south Imbrium
basin (30W, 5 to 15 N). The Heraclides group comprises the Gruithuisen domes
(Head and McCord,1978) and a number of sinuous rille source craters while the
south Imbrium group comprises a series of low-profile domes (Hackman,l1962;
Schmitt et al,1967).

Previous mapping (Whitford-Stark and Head,1980) established that the
youngest unit within Procellarum, the Sharp Formation, was primarily erupted
from sinuous rille source craters located at the mare/highland boundary
although some, such as the Flamsteed Basalt Member (Pieters et 3&,1980), were
erupted from vents near the eastern edge of the Marius Hills. This association
of flows with rilles is typical of plains-style eruptions (Greeley,1976).
Similar rille-associated flows form large parts of the Hermann Formation; a
unit that can be shown (Whitford-Stark and Head, 1980) to have been particularly
derived from the Marius Hills and possibly the Rlimker Hills. The sinuous rilles,
and their source craters, of the Telemann Formation are much larger than
those of the Hermann Formation (up to 5 km diameter as against €1 km) implying
much greater eruption rates for the former (Whitford-Stark and Head, 1977;
Head and Wilson,1980). These Telemann Formation rilles are particularly
associated with the Aristarchus Plateau/Harbinger Mts. No vents have been
identified within the limited surface exposure of the Repsold Formation. This

may be a function of erosion of this early mare unit or, by analogy with

Mare Australe (Whitford-Stark,1979), may reflect an early flood-type eruption ]
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Figure 4. The distribution of mare ridges
within Oceanus Procellarum. The highlands
are indicated by dots, and R, M, and A,
represent the Rfimker Hills, Marius Hills,
and Aristarchus Plateau respectively.
Note the polygonal ridge pattern in
northern Procellarum, the parallelism of
ridges in the center, and the reticulate
pattern in the southeast.
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style.

3) Tripartite subdivision of Procellarum

The tripartite subdivision of Procellarum(Figure 1) was establisﬁed
by Whitford-Stark and Head (1977b) based on physiographic differences
between each. The central section is characterized by the three large igneous
complexes and is generally devoid of highland remnants. This scenario was
believed to reflect a thick mare fill. The northern section has a few highland
remnants, particularly in the northwest, but its most distinctive character-
istic is the bolygonal mare ridge pattern (Figure 4) rather than the linear
ridge alignment of central Procellarum. This polygonal pattern could reflect
sub-basalt topography (Maxwell et al,l1975), which together with the highland
"islands", suggests that northern Procellarum is shallower than central
Procellarum. The southeast section of Procellarum is characterized by mare
lavas separated by abundant interspersed remnants of highlands (Figure 5).
This abundance of pre-mare topography suggests a thin mare fill. Estimates
of the average fill thickness in southeast Procellarum include 1.1 xm (
Marshall,1961), 1.4 km (De Hon,1978), 500 to 750 m (H8rz,1978), and 400 m
(De Hon, 1979; Pieters et al,1980).

The boundary between the southeast and central sections is represented
by a line connecting Sirsalis E and Tobias Mayer W. Radar data shows a topo-
graphic drop of 100 m to the northwest of the lineament (Pieters et al,1980),
Magnetic data (Anderson et al,1977) indicates a strong linear magnetic
anomaly associated with Rima Sirsalis - the highland extension of the topo-
graphic lineament - and there is also a linear gravity high associated with
Rima Sirsalis (Sjogren,1974). In these respects Rima Sirsalis is unique among
the lunar graben that have been the subject of remote-sensing analyses. These

features suggest that the lineament is a normal fault, downdrcpped to the
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northwest and perhaps intruded by an igneous dike. The fact that the youngest
flows in the Flamsteed region cover the lineament with no apparent deflection
in flow direction (Pieters et al,1980) suggests that the presently observed
topographic variation across theAlineament has arisen since the emplacement

of the mare basalts. The distinctive variation in'highland remnants between
central and southeastern Procellarum suggests, however, that movement on the
fault also predated mare emplacement. The height difference of the mare
surface between central and southeastern would have to have been removed

prior to the emplacement of the Sharp Formation. The extensive deformation

of the early Hermann but not the late Hermann Formation (Whitford-Stark and
Head, 1980) suggests that major movement on the fault had occured prior to the
emplacement of the late Hermann Formation. Basalts of the late Hermann
Formation would therefore have been responsible for removing the topographic
differences either side of the. fault. This scenario might explain the presence
of the Marius Basalt Member of the Hermann Formation to the west of the
Flamsteed area but the Cognitum Basalt Member to the east (Pieters et al,1980).
Vertical movement on this fault might also account for the largely missing
western ring mountain of Mare Imbrium and also the greater degree of flooding
in central Procellarum. In essence, central Procellarum is a sector graben
which collapsed along faults initiated by the Imbrium impact. The northern
equivalent of the Sirsalis lineament which presumably downdropped Proceelarum
on its southeast side has not been identified and is merely inferred from the
Imbrium ring gap. The lack of similar geophysical anomalies associated with
other graben may be a function of the instrument resclution (since Sirsalis

is one of the largest) or it may mean that Sirsalis is unique in being intruded
by dense basaltic material. If the latter is the case, it would imply that

the graben predated intrusion of basaltic material and were not initiated by

those intrusions. If central Procellarum, prior to mare flooding, had the
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Figqure 5 Large scale map of southeast Procellarum showing the high-
lands (horizontal ruling), crater ejecta blankets(dotted), dark mantle
material(diagonal ruling), cones(triangles), domes(hemispheres), graben
(dash-dot lines), and fractures(solid lines), B is the crater Bullialdus,
C is Copernicus, E is Eratosthenes, F is Flamsteed P, G is Gassendi, K is
Kepler, R is Reinhold, and L is lansberg.
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Figure 6. Map illustrating the grabern
(1inear solid linee) in the high~
lands(horizontal ruling) around
Procellarum, Also shown are the
internally-rilled craters(large
solid dots), and the sinuous rilles.
The arrows represent the directions
taken by the sinuous rille lavas
while the small solid circles are
the source craters(where identiable)

QCEANUS
PACCELLARUM




surface topographic characteristics of southeast Procellarum, then the net

throw on the faults may have been of the order of a kilometer or greater.

4) Tectonic evolution

a) Graben

Linear graben are clearly related to the emplacement of mare basalts,
they being found only within and around the maria (Whitford-sStark,1974) and
both cut and are flooded by mare basalts. Mason et al (1976) have hypothesized
that the graben resulted from posthumous movements on fracture patterns formed
in the lunar lithosphere by the basin-forming impacts. These movements are
believed (Quaide,1965; Solomon and Head,1979) to result from tensional stresses
produced close to the mare/highland boundary as a result of the basalt load
within the maria. Figure 6 shoﬁs the large tectonic graben within and around
Procellarum while Figure S5 shows the fractures, too small to be depicted on
Figure 6, that occur within southeast Procellarum. Particularly apparent from
Figure 6 is the annulus of graben around Mare Humorum. The lack of a similar
well-developed graben annulus to Mare Nubium suggests a lesser basalt thickness
within that mare; a suggestion supported by isopach maps of basalt thickness
(De Hon,1979). The linears developed within the highlands to the east of 0°
are clearly radial to Mare Imbrium. Some of these linears may be tectonic but
many appear to be of sedimentary origin caused by erosion of the pre-Imbrian
terrain and deposition of the Imbrium ejecta blanket (Head,1976). The other
prominent graben system in Figure 6 is that developed within the highlands
to the southwest of Procellarum. The longest of these graben, Rima Sirsalis,
extends some 450 km into the highlands from the edge of Procellarum. More
commonly, the graben are restricted to within 250 km of the mare/highland

boundary and appear to divide the highlands up into approximately 725,000 kmz

blocks. The presence of these extensive graben to the southwest of Procellarum
l 155 — ______._.___________.___—-——----——--—--——————J
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is again supportive of a thick basalt f£ill within central Procellarum, while
the thinner £ill in northern Procellarum is reflected by the lesser graben
development in the highlands adjacent to that area.

The width of Rima Sirsalis is remarkably constant, generally varying
between two and three kilometers (Figure 6); notable departures from these
average values occur where Rima Sirsalis is joined by another slightly offset
graben and where it tapers to a point at its furthest distance from Procellarum.
It seems unlikely that two cross-cutting graben could have been produced in
the same tensional environment, rather it would seem that at least two
different generations of graben are present to the southwest of Procellarum.
Rima Sirsalis appears to cut and therefore be younger than all the graben
along its path though it is flooded by mare basalts at its northern extremity.
McGill (1971) has determined that the graben wall slopes cluster around 60°
while he calculated that Rima Sirsalis walls sloped at 68" Assuming 68%and
that Sirsalis is symmetrical, with an average width of 2.75 km the two walls
would converge at a depth of about 3.5 km. A more detailed analysis of graben
by Golombek(1979) supports this convergence depth and he has proposed that
this depth reflects the thickness of the lunar megaregolith.

Lucchitta and Watkins (1978) determined the southwest Procellarum
graben to be among the youngest on the Moon and suggested that their formation
terminated at about 3.6 + 0.2 b.y. ago. The present authors have established
that the graben around Procellarum are flooded by the Sharp Formation and late
part of the Hermann Formation but cut the early part of the Hermann Formation;
the Hermann Formation was estimated (Whitford-Stark and Head,l1980) to have an
age of 3.3 * 0.3 b.y., in general agreement with the results of Lucchitta and
Watkins (1978).

Although graben parallel to the mare/highland boundary can be adequatel

explained by basalt loading of the lunar lithosphere, the graben normal to the




boundary are difficult to explain by this same mechanism. It is possible that
these normal graben were produced by the Imbrium impact event (Mason et al,
1976), alternatively they may represent the surface expression of subsurface
dikes. This latter interpretatioﬁ would be analagous to that proposed (
Pollard and Holzhausen,l1979)to explain similar structures developed over
terrestrial dikes, would be consistent with the formation of the graben
during the period of emplacement of mare basalts, would explain the magnetic
and gravity anomalies associated with Rima Sirsalis (Anderson et al, 1977),
and may offer an explanation for the volcanic cone-like structure (McCauley,
1973) of the crater Sirsalis J (59 W, 13.5 §).

In addition to the large graben, there are within the mare fractures
usually less than 50 km in length and a few hundred meters in width. In
southeast Procellarum (Figure 5) these fractures are common to basalts of the
Hermann Formation but also occur in the younger Sharp Formation. Their
production therefore continued after the termination of graben production. To
the west of Copernicus these fractures are associated with low profile domes,
but more particularly cone-~like structures are aligned along the fractures.
It therefore appears probable that at least some of these fractures were
fissures from which basalts were erupted.

The Straight Wall (Rupes Recta) is most probably a dip-slip fault
(Fielder 1963) produced by loading of the mare basalts on the lunar litho-
sphere. The Straight Wall is located in eastern Mare Nubium, is 120 km in
length has a height of 340 + 50 m, and has a Slope of less than 48'(Fielder,
1963). It would seem that this fault is also younger than the graben since

it cuts the young basalts of the Sharp Formation.

b) Internally-rilled craters

Internally-rilled craters are those whose floors are punctuated by
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fractures in various patterns (Whitford-Stark,1974; Schultz,1976). These
fractures appear to have been produced by forces acting entirely within the
confines of the enclosing crater. and most likely resulted from the volcano-
tectonic modification of impact craters(Schultz,1976; Hall et al,1979) although
regional isostatic adjustment associated with mare emplacement (Bryan et al,
1975) and isostatic rebound (Baldwin,l1968) have also been proposed to account
for this phenomenon.

To investigate the thickness of basalt fill in, or sill thickness
beneath the floors of,floor-fractured craters, the floor-fractured craters
to the west of Procellarum were analysed by the method outlined in Whitford-

Stark (1979). In brief,

Df - De
t = De

Drxr - Dt
where t is the fill thickness, Df and Dr are the measured floor and rim crest
diameters respectively, De = 0.684 x Dro'41 (Wood and Andersson,1978), and
Dt = 0.728Dr - 9.86 (R.Roth,personal communication,l1979) where the curves
for De and Dt are the depths of excavation and original floor diameter of
fresh Tycho-type craters. That is, the thickness values obtained assumes that
the measured crater had the characteristics of a fresh Tycho-type crater at
the time of filling. A total of 132 craters in excess of 18 km diameter were
investigated by this method; of these, 38 were classified as being floor-
fractured (Figure 6). Figure 7 compares frequency plots for the floor-fractured
and non-floor-fractured craters. Although the two plots are not identical,
no systematic differences can be observed between them; both sets of crafers
have similar £ill thicknesses - up to in excess of 3.5 km. Since the craters
were probably not fresh at the time of filling, the fill thicknesses were

recalculated based on the degradation state of the enclosing crater. Wood

(1979) has proposed that in the 1 to 5 classification scale of lunar craters,
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where 1 is the youngest and S5 the oldest, that the 2,3,4, and 5 class craters
are 23%, 40%, 59%, and 76% degraded respectively. For example, a class 4
crater with a calculated fill thickness of 3.09 km has a recalculated fill

In

effect. the recalculated value is the excess of fill thickness that a crater

has in comparison with a similarly degraded, unfilled,Tycho-type crater of
| the same size. The recalculated fill thicknesses are plotted in Figure 8.
The recalculated floor-~fractured craters still exhibit a wide, though reduced,
range of £ill thicknesses. The non-floor-fractured craters exhibit as wide a
range of values but they do show a strong peak at 400 to 700 m. If the floor-
fractured craters do owe the origin of their fractures to volcanotectonic
uplift, it is not readily apparent from Figures 7 and 8 how much movement has
taken place. If both the floors of floor-fractured and non-floor-fractured
craters in this area have been uplifted by similar amounts, the presence of

fractures may simply reflect the cohesiveness of the floor material- fractures

forming most readily in a cohesive substrate.

A further feature of both figures7 and 8 is that the craters of both
, groups with the thickest fill tend to be partly or completely lava-flooded.
In these cases, such as the example of the crater Cruger (67 W, 16.5 S), it is
possible that the basaltic floor materials cover previously-formed floor
, fractures. The craters which are non-rilled but apparently contain a thick
basaltic fill, such as Cruger, were evidently flooded at a late stage in the
development of Procellarum. The £ill of these craters floods the graben earlier
shown to have been produced prior to the emplacement of the late Hermann
Formation. Thus the basaltic crater fill is equivalent in age to the late
Hermann Formation or the Sharp Formation. The low albedo and blue color of
the floor material of the crater Grimaldi(67 W, 5 S) suggests that it is a

titanium-rich basalt of the Sharp Formation. The presence of this young basalt

Sre=e
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in the circum-mare craters supports the view(Solomon and Head,1979) that a
tensional environment existed in this area as a result of lithosphere loading
by the earlier mare basalts. This appears to_be the most logical explanation
for highland craterstwhich correspond in age, and probably composition, with
the least voluminous of the Procellarum basalt units(Whitford-Stark and Head,
1980). The previously-formed graben faults may have acted as pathways for
magma which were tapped by the as yet unflooded craters, a suggestion supported
by the location of both the internally-rilled and flooded craters within the
limits of the area containing graben (Whitford-Stark,1974). Indeed, many of
the craters which have been partly flooded by basalts lie on graben and are
not internally-rilled(e.g., Hedin and Ricciolli). This observation does not
lend support to the viewpoint (Schultz,1976) that flooded craters were floor-
fractured prior to basalt emplacement. In addition, if floor-fracturing were
a precursor to basalt flooding, one might expect to see some floor-fractured.
unflooded craters in Mare Australe, yet in that mare all the craters are
either flooded, or non-flooded and non-floor-fractured (Whitford-Stark,1979)
In addition to the large floor-fractured craters there is also a
group of small floor-fractured craters classified as types IV and V by
Whitford-Stark(1974) and included within Class IV of Schultz(1976). The small
craters studied in the present analysis (Figure 6) have a mean diameter of
13.68 km, tend to occur in groups, and are often intersecting. Some of these
craters have similar sizes and are elongate in the same direction as adjacent
non- floor~fractured Orientale secondary craters. The small size of these
craters appear to be more consistent with floor-fracturing by the cool.ng of
an originally molten floor surface than by tectonic motion. It is possible
that this molten material could have been Orientale impact melt though, again,
adjacent unfractured craters do not lend supporé to this mode of origin,since

the distribution of impact melt would be expected to be more uniform. Cooling
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of volcanic material would more readily account for the scattered distribution

of these small floor-fractured craters.

c) Mare ridges

After craters, mare ridges have been the lunar surface features with
the most numerous different interxrpretations of their origin. This stems largely
from the fact that similar features are lacking or not obvious on Earth. Most
hypotheses consider the ridges to be volcanic, tectonic, or volcanotectonic.
Typically the ridges consist of a broad arch from 1 to 20 km wide, often
capped by anlirregular, steep wrinkle ridge. Some arches reach several hundred
kilometers in length and range in height from a few to several hundred meters
(Strom,1971). Although mare ridges often terminate at the mare/highland
boundary, in some instances they can be traced into the adjacent highlands

(e.g.,Whitford-Stark, 1979). Parts of the ridge system within Procellarum

-have been the object of studies by Tjia(1970), Wilson (1970), Colton et al(1972)

, Young (1972), Lucchitta (1977), and Raitala (1978).

Figure 4 shows the distribution of mare ridges over the entirety of
Procellarum. In southeast Procellarum the ridges exhibit a pronounced reticul-
ate pattern with preferential alignments in NW-SE, NE-SW directions correspond-
ing to the alignments of the "lunar grid" (Fielder and Kiang,1962). To the
northwest of the boundary between southeast and central Procellarum the ridge
system exhibits a greater degree of parallelism. The system is dominated by a
central group of sub-parallel ridges which passes through the Marius Hills
complex, skirts the western side of the Aristarchus Plateau and continues to
the Rlimker Hills (Figure 4). This same ridge system can be traced through the
southern part of southeast Procellarum as far as the crater Bullialdus (22.5 W,
21 S). The fact that the ridge system passes around the Aristarchus Plateau

but through the Marius and Rmker Hills (Whitford-Stark and Head, 1377) may
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reflect a different near-surface structure at the Plateau.Other features of
the ridge system in central Procellarum include a pattern which postdates and
is radial to the crater Seleucus (66.5 W, 21 N), and a group of ridges which
continue the circular outline of ‘Mare Imbrium.

In northern Procellérum the central ridge system disappears and is
replaced by a polygonal ridge pattern. In the eastern part of northern
Procellarum and in the adjacent Mare Frigoris, the ridges are parallel with
or normal to the mare/highland boundary (whitford-Stark and Fryer, 1975). In
northwestern Procellarum a mare ridge completes the outline of the largely
buried crater Repsold C.

A notable feature of the mare ridges is that they rarely cross-cut
one another. A rare example occurs to the immediate north of the Rfimker Hills
where a northeast trending ridge cuts é northwest trending ridge. Another
feature of the mare ridges is their common en echelon arrangement and, as
noted by Tjia(1970), those ridges which strike between north and east predom—
inantly exhibit dextral en echelon offset while those striking between north
and west exhibit a predominantly sinistral en echelon pattern. Radar analysis
of maria Serenitatis and Crisium (Peeples et al, 1978) clearly shows the
local higher relief of subsurface layers directly beneath the arches. Together,
these features strongly indicate that the majority of ridges are tectonic in
origin, most likely being compressional folds. The coherence between the
surface arches and the locally high relief of the subsurface layers at depths
in excess of 1.5 km in Mare Serenitatis does not lend support to the inter-
pretation (Bryan,1973) for their origin by localized compression of a
relatively thin crust uncoupled from the underlying structure and topography.
A compressional origin for the ridges does,however, provide a mechanism to
account for the central ridge system in central Procellarum, located furthest
from, and parallel with, the mare/highland boundary in a position where the
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basalt f£fill might be expected to be thickest. The lack of ridges within the
Aristarchus Plateau could be accounted for by its being a non-coherent, less
readily-deformable block than the mare surface. On the other hand, the presence
of ridges within both the Marius and Rlimker Hills suggests that a significant
thickness of mare-related materials overlies highland crust at those localities.
At other localities, such as within the crater Flamsteed P (Pieters et al,1980)
and the ridge system completing the outline of Repsold C, the ridges appear
to have originated more through local stresses resulting from the disposition
of the pre-existing topography, that is, either by distortion of the basalts
where they are draped over buried rim crests or by subsidence of basalts
within large craters. The reticulate pattern in southeast Procellarum, the
polygonal pattern in northern Procellarum, and the radial pattern around
Seleucus appear difficult to explain by compressional forces. On Earth such
patterns are usually produced by tensional forces,though within the mare
the reticulate and polygonal patterns could be produced by compression if two
maximum horizontal principal stress directions arise from the sinking of a
rectangular or oblong basin. The radial pattern around Seleucus may be
related to vertical forces (Schultz,1976) acting during the formation of the
fractured floor of that crater. Another feature of ridges is that they rarely
extend far into the ejecta blankets of pre-ridge, large (greater than 30 km
diameter) craters. The intense brecciation of the surface in the vicinity of
large craters presumably inhibited the coherency of the stress distribution.
The wrinkle ridgés which are often associated with the arches exhibit
no predictable pattern; they occur in linear trends, form zig-zag patterns,
move from one side of the arch to the other, and in places extend out onto the
flat mare surface (Lucchitta,l1977). Lucchitta (1977) came to the conclusion
that the wrinkle ridge and arch appear to be only indirectlv related and

suggested that the wrinkle ridges might not even be structural in origin but
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rather volcanic. A volcanic origin for the ridges has been proposed by Fielder
(1961) and Strom (1971). In support of his volcanic interpretation, Strom
cites the location of bright hills overlying ridges, circular plateau along
ridges, and the presence of short flows from ridges. To these might be added
the source craters of sinuous rilles in the Herigonius region of southeast
Procellarum (Greeley and Spudis,1978) and a line of vents along a ridge to
the north of the crater Kreiger(45.5 W, 29 N) in northern Procellarum (
Lucchitta,1977). There seems little doubt that volcanism was associated with
the mare ridges, it is less obvious that the ridges were actually produced by
volcanism.

Although the predominantly non-cross-cutting nature of ridges and
their regular offsets suggests that they were produced within a uniform stress
field, there is less information on h&w long that stress field was operative.
Muehlberger (1974) in a study of ridges in Mare Serenitatis believed their
formation to be continuing to the present. Schaber (1973) and Bryan (1973)
have shown that mare ridges grew between the emplacement of successive flows
in Mare Imbrium while Greeley(1971) has documaneted a similar situation in the
Marius Hills. In an attempt to investigate the time period of ridge formation,
a detailed investigation has been made of the Flamsteed region (Pieters et al,
1980) . Because of the difficulties in accurately defining the lateral limits
of the ridges because of their low profiles, the lengths of individual ridge
segemnts within each Formation were measured (Table 3). Another difficulty
arises from the ridge size being being close to or below the resolution of
the spectral vidicon images. Thus although a ridge may be within the Sharp
Formation it could be composed of Telemann Formation material. An example was
found (Pieters et Ei,l980) where basalts of the Sharp Formation were guided
by and partly flooded the lower portions of a ridge composed of Hermann Form-

ation material. A thin lava cover over ridges would thus overemphasize the
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ridge population of the younger unit. In Table 3 the most significant column
is that of %area of basalt/ % length of ridges. It clearly shows that in

terms of the area occupied by each formation there is a progressive decrease
in ridge development with decrea;e in age. This is partly a reflection of the
fact that the early units would probably have been covered by younger units
had they not been topographic highs at the time of deposition of the younger
units. However, it also implies that deformation to produce ridges of the
Telemann Formation material took place before the deposition of the overlving
Hermann Formation. At the same time, the presence of ridges within the youngest
Sharp Formation implies that ridge production also postdated the emplacement
of that unit. However, the barriers to basalt flow provided by some ridges

in the Flamsteed region (Pieters et al,1980) and in other parts of Procellarum
(Whitford-Stark and Head, 1980) indicates that the major ridge systems were
produced prior to the emplacement of the Sharp Formation and probably before
the end of emplacement of the Hermann Formation. Subsequent production of
ridges has been minor, though it may continue to the present.

To summarize, ridges were produced over a period extending from at
least 3.6 + 0.2 to 2.7 + 0.7 b.y. ago in an apparently uniform stress field.
Their formation may continue to the present and, in this respect, they differ
from graben whose production terminated prior to the eruption of late mare
basalts. It therefore would appear that the graben and ridges are not concom-
itant phenomena, an argument supported by the presence of ridges but not graben

in Mare Australe (Whitford-Stark,1979).

d) Evolution of the present surface topography

The present surface topography of Procellarum in part reflects original
depositional slopes and in part the tectonic modification of those slopes

(Scott et al, 1978). The gross topography of Procellarum can be ascertained
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Fiqure 9 Topogrephic map of Ccea
-us Procellarum based on a global
harmonic topogrephic model of
degree and order 10, derived from
Bills and Ferrari(1975). At the
bage are laser altimeter profiles
across the flight paths indicated
bty solid lines running east-west
across the map. The key and cross-
section heights are in km.
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Figure 10. Contour map of Oceanus Frocellarum., The downslope directions
are indicated by the tick marks while the contour interval is spproximately
100 m (see text). Highlands are indicated by the dotted pattern. The map was
compiled from the Lunar Topographic Orthophotomaps, Radar data supplied by
S.H. Zisk, and the Lunar Aeronautical charts, augmented by lager altimetry
data. The coverage and resolutions of the different data sets are indicated in
the key.
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from Figure 9,which is based on the map by Bills and PFerrari(1975) and is
part of a global harmonic topegraphic model of degree and order 10. Particul-
arly apparent from this figure are the topographic lows associated with the
Rimker Hills in northern Procellarum and the area to the southwest of the
Marius Hills. A topographic high appears to correlate with the area of mare
domes to the west of Copernicus. In northern Procellarum the sinuous rilles
(Figure 6) are largely tangent to the topographic low,suggesting that the

low results from subsidence rather than reflecting original depositional
slopes. The load which induced that subsidence was probably‘that of the Rimker
Hills themselves. Likewise, the low to the southwest of the Marius Hills does
not appear to correlate with the directions of local sinuous rilles and again
probably results from post-emplacement subsidence. If the basalts within
both lows were originally erupted to a near hydrostatic level, subsidence of
the order of 0.5 to 1.5 km is required near the center of Procellarum.

Figure 10 represents a preliminary attempt to define more accuratley
the slopes within Procellarum. The map has been compiled from the Lunar Topo-
graphic Orthophotomaps which in places have a contour interval of 50 m, the
profiles of the laser altimeters, and radar topographic maps with a contour
interval of 100 m. Areas not covered by the previous were mapped using the
LAC charts which have a contour interval of 300 m. Several difficulties were
encountered in compiling the information from these various sources. For
example, many of the contours on the early LAC charts do not match at the map
boundaries while the 300 m contour interval on these maps appears to be
closer to a 100 m intervil when compared with the more accurate orthophotomaps
of the same areas. In view of these difficulties, the absolute heights of the
contours have been omitted from Figure 10; however, the interval between each
is believed to be close to 100 m within the mare areas.

A comparison of sinuous rille directions (Figure 6) with slope
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directions (Figure 10) shows that there are places where the rilles parallel
the slope direction and places where they are normal to the slopes. If there
had been no topographic alteration of the mare surface since the eruption of
the sinuous rille basalts. then it is to be expected that the rilles would be
normal rather than parallel to the contours. This is in part constrained by
the contour interval since the rille lavas probably flowed down very shallow
slopes (e.g.,Hulme 1973). Additionally tectonic subsidence could have emphas-
ized the local slope or inverted that slope (Scott et al,1978). It is not as
likely, however, that the sinuous rilles would have originally paralleled the
contour lines. Such a situation is found to the southeast of the Aristarchus
Plateau and east of the Marius Hills. Both these areas have surface flows of
the youngest Sharp Formation. It is therefore postulated that relative subsid-
ence of parts of Procellarum postdated the emplacement of these youngest
basalt units. In other areas with older basalts such as to the north and west
of the Aristarchus Plateau, in the south Imbrium basin, and northwest of the
Marius Hills, the rilles are normal to the contours. These and others appear
to have originally been basinal areas which have sunk further following basalt
emplacement and, as Scott et al (1978) note, not a contradiction in that the
younger basalt surfaces appear more deformed than older. For example, in the
crater Letronne the early Telemann Formation is preserved at a higher topo-
graphic level at the crater edge than the younger basalts at the crater
center.

The Lunar Topographic Orthophotomaps also show that there are signif-
icant absolute height variations between the presently defined basinal areas.
For example, relative to the 1,730,000 km datum, the floor of Letronne has a
height of 5.9 km while Mare Cognitum has a height of 5.2 km. Some of the highest
mare areas as shown on the LTO's are the mare ridges in the Herigonius region

at 6.3 km. In contrast, the mare surface to the immediate northwest of the
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Aristarchus Plateau is only 5.0 km. It would appear on the basis of the present
analysis that, if the mare basalts wére originally erupted to a consistent
hydrostatic level, that level was close to 6.0 km with respect to the

1,730,000 km datum. Values now lower than this would suggest local subsidence,
while values higher would suggest uplift. As noted in the previous section on
mare ridges, the majority of localized, rather than regional subsidence and

uplift,appears to have predated the completion of emplacement of the Hermann

Formation.

S) Gravity anomalies

Oceanus Procellarum has been described as enigmatic (Scott,1974) in
terms of its gravitational properties,since there are no large anomalies nor
any anomalies that appear to be associated with surface features. Figure lla
shows a portion of the Bouguer gravity map of the Moon on which the only
correlation appears to be high values associated with the mare and lower
values associated with the highlands. A small gravity high to the northwest
of the Aristarchus Plateau lies within the youngest Sharp Formation and, from
the alignment of sinuous rilles toward this location, appears to have been a
topographic, perhaps basinal, low in the past.

The 100 km altitude gravity anomalies depicted in Figure 1llb can be
better correlated with surface features. Immediately obvious are the large
positive anomalies associated with Mare Humorum and Mare Imbrium - the so-
called mascons. A further gravity high to the west of Humorum represents the
outer limit of the Orientale mascon anomaly,though superimposed upon this
there is a linear gravity high which, like the magnetic anomaly in this same
area, appears to correlate with the location of Rima Sirsalis. Within

Procellarum itself there is a negative anomaly centered on the Fra Mauro area

and a smaller negative anomaly in western Procellaum that could correlate
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with the ejecta from the crater Cavalerius. The negative anomaly over Fra
Mauro extends to Mare Nubium and lends further support to the prediction

(De Hon, 1979) of a thin basaltic fill within that mare. The slight positive
anomaly that extends over the rest of Procellarum almost exactly matches the
distribution of the major part of the youngest Sharp Formation. A previous
analysis of the Flamsteed region (Pieters et al,1980) also showed a strong
correlation between positive gravity anomalies and the location of the Sharp
Formation. It was suggested that the lack of strong anomalies associated
with earlier units resulted from their having undergone at least partial
isostatic readjustment while the Sharp Formation basalts had not.

Figure llc shows the interpreted(Scott,1974) gravity highs and lows
obtained by combining the data obtained f;om several spacecraft. Scott (1274)
concluded that the axial trends of these anomalies correlated with the axial
trends of the mare ridge systems (Figure 4), the highs corresponding to the
ridges and the gravity lows to the intervening topographic lows. Scott also
noted that a westward shift of lfto 2°of the gravity axes would produce a
better correlation. The correlation of positive anomalies with ridges was
thought by Scott (1974) to result from dike intrusion into fractures and faults
beneath the ridges.

The apparent lack of large positive gravity anomalies within Oceanus
Procellarum is therefore believed to result from the partial isostatic comp-
ensation of the early basalt units. This period of compensation is reflected
by the mare ridges and graben which formed largely prior to the emplacement
of the youngest part of the q?rmann Formation. Younger units, such as the
Sharp Formation, have not been compensated and thus exhibit small positive
gravity anomalies. Other gravity highs appear to be associated with the
intrusion of dense basaltic material, such as along Rima Sirsalis, while
gravity lows are correlated with the less dense ejecta blankets of large
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craters and the fractured, older highland megaregolith.

6) Evolution of Oceanus Procellarum

The irregular shape of Procellarum indicates that the original cavity
that was infilled by mare basalts was not a single impact cavity at the time
of that infilling. It has been proposed (Cadogan,1974) that the western
border of Procellarum corresponds to a ring fracture of an early 2,400 km
diameter basin called Gargantuan, cenetered at 23N, 29W. This basin was
subsequently largely destroyed by the formation of the Imbrium impact cavity
within its northwestern quadrant. Prior to its destruction, Gargantuan had
been flooded by KREEP basalts (Cadogan,l1974). Some difficulties are encocuntered
with this scenario; for example, it is difficult to account for the present
variation in height of highland topography around what was the basin without
employing post-Imbrium formation alteration of that topography. Specifically,
the highlands are topographically high in the scutheast quadrant of what would
have been the Gargantuan basin(Fra Mauro area) but are completely buried in
the central Procellarum area (except at the Aristarchus Plateau) which is
equidistant from the proposed basin center. This implies to the present
authors that the height alteration of highlands underlying central Procellarum
postdated the formation of the Imbrium impact cavity or that the Fra Mauro
material ejected to the west of Imbrium was deposited in a basinal area. The
evidence for vertical tectonics at the Aristarchus Plateau and the Rima
Sirsalis extension suggests that central Procellarum was tectonically lowered
on major faults.

It has been argued (Whitford-Stark and Fryer,1975) that the irregular
Mare Frigoris cavity may have been initiated the the movement of crustal
blocks along faults initiated by the formation of the Imbrium impact cavity.

It is possible that Procellarum cwes its origin, in part, to a similar l
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mechanism. As an alternative to the Gargantuan basin hypothesis, it is
suggested that the western boundary of Procellarum and the northern boundary
of Frigoris are defined by ring faults produced by the Imbrium impact event
and that the present height variations around Procellarum result from tectonic
motion along faults radial and concentric to the Imbrium impact cavity.
Recent analysis of orbital geochemical data (Spudis,1979) also indicates that
KREEP volcanism was not confined to the Imbrium-Procellarum area and instead
was probably moonwide. It is therefore not necessary to invoke a huge early
basin to account for the KREEParound Procellarum. Moreover, the correlation
of KREEP with the ejecta blankets of the craters Archimedes, Timocharis, and
Lambert within Mare Imbrium (Metzger et 5&,1979) suggests that such material
forms a shallow subsurface layer beneath the mare basalts. The presence of
KREEP materials as basaltic fragments within Apollo 15 samples. and their
crystallization ages of 3.9 b.y. led Hawke and Head (1978) to suggest that
the KREEP basalts were extruded just subsequent to the Imbrium impact, again
making some of the arguments for the existence of Gargantuan superfluous. In
Procellarum, KREEP basalts appear to both predate, and were erupted simult-
aneously with, mare basalts (Whitford-Stark and Head,1980).

In its early (during the Nectarian period) history Procellarum is
envisaged as a highland area punctuated by a number of smaller impact basins
such as Humorum, Cognitum, and Nubium, which had been partly flooded by KREEP
and mare basalts. The formation of the Imbrium impact cavity led to gross
modifications of this highland topography with central Procellarum being
down-dropped with respect to other areas. It is suggested that this major
tectonic activity was synchronous with, or postdated, the draping of the
terrain by the Imbrium ejecta. This ejecta in turn was overlain by the
subsequent ejecta deposits from the Orientale basin.

The earliest, recognizable, apparently extensive,post-Imbrium basin
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formation basalts erupted in Oceanus Procellarum were the titanium-rich
basalts and pyroclastic rocks of the Repsold Formation (3.75 + 0.05 b.y.)
(Whitford-Stark and Head,1980). These were overlain by the extensive, possibly
VLT, basalté of the Telemann Formation(3.6 + 0.2 b.y.) which were in part
derived from the Aristarchus Plateau. It is not known whether>the Aristarchus
Plateau was also a source for the older Repsold Formation but the spectral
characteristics of the floor of Aristarchus crater could be those of a
titanium-rich basaltic impact melt excavated from beneath the Telemann Format-
ion(Wwhitford-Stark and Head,1980). The Aristarchus Plateau did, however, exist
as a topographic high at the time of eruption of the Telemann Formation as is
evidenced by the outward-pointing directions of sinuous rilles and the fact
that the Telemann Formation is not there covered by younger basalts. Although
the Aristarchus Plateau appears to be fault-bounded (Whitford-Stark and Head
1977), it is not possible to distinguish whether the Plateau remained as a
topographic high as the rest of central Procellarum was downdropped or the
Plateéu was downdropped and later re-elevated.

The surface materials at the Rlmker and Marius Hills appear to belong
to the Hermann Formation (3.3 + 0.3 b.y.) though it is not possible to disting-
uish whether they were also eruption sites for older basalts. These areas
remained as topographic highs through the eruption of the younger Sharp
Formation( 2.7 + 0.7 b.y.). The major period of isostatic re-adjustment of
Procellarum appears to have taken place during the eruption of the Hermann
Formation intermediate basalts since the formation of graben and major period
of ridge formation appears to have terminated at this time though ridges
continued to form at a later date.

The final episode of basaltic magmatism within Procellarum was that of

eruption of the titanium-rich Sharp Formation basalts from locations predomin-

antly at the mare/highland boundary. Many of the craters in the adjacent
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highlands, such as Zupus and Cruger, appear to have been infilled with basalts
at thigs time. The subsequent history of Procellarum has been that of the
formation of Copernican-aged impact craters and continuous very slow subsidence
of the basaltic fill. Presentlyyobserved positive gravity anomalies appear

to be associated with graben and the youngest, uncompensated Sharp Formation.
Alinear magnetic anomaly also appears to be associated with Rima sirsalis,
while negative gravity anomalies and other magnetic anomalies appear to be

related to crater ejecta blankets and the highlands(Hood et al,1979).
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Abstract

Mare Australe, an approximately 900 km diameter basin of impact origin
Tocated near the southeast 1imb of the moon, has been subjected to at least
four major episodes of basalt eruption ranging in age from early Imbrian to
Eratosthenian. These basalts cover an area of 320,000 square km, average
about 750 m in thickness, and have a total volume of approximately 240,000
cubic km. The basalts were emplaced largely in flood eruptions from at least
197 vents Tocated on post-basin impact crater floors. The youngest basalts
occur in an annulus near the outer edge of the basin. The fill thickness
apparently reflects a mulfi-ring structure for the post-impact morphology
of the Australe basin despite the fact that this basinal structure was
largely destroyed by smaller impacts before eruption of the present surface
basalts. The thin basaltic fill was not sufficient a load to produce tec-
tonic rilles, but mare ridges are present and exhibit a prominent north-

south alignment.
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ABSTRACT

Photogeologic and remote~sensing data have been combined
to characterize the chemistries and eruption styles of the Mare
Imbrium basalts. Ten major units, seperable in terms of age and
chemistry, have been recognized. These units range in age from
3.75 # 0.15 to 2.5 + 0.3 b.y. and in chemistry range from V.L.T.
to titanium-rich basalts. The 850,000 km2 of surface basalts are
believed to form a small portion of the total Imbrium basin fill

estimated at 2.2 x 10° xm>

; the earliest units being totally
buried. KREEP and titanium-rich basalts were possibly early infil
materials. The surface basalts were preferentially erupted near
the periphery of Imbrium. Mare ridge production took place over

a period extending from at least 3.5 + 0.25 b.y. to less than

3.0 b.y. ago, while graben formation terminated at 3.3 + 0.3 b.y.
Faults extending from the Imbrium basin into the surrounding

highlands appear to have been the eruption sites for young,

titanium-enriched, circum-mare basalts.
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Introduction

Mare Imbrium is an approximately circular expanse of

basalt with a radius of about 540 km, located on the near side of

the moon. It has been the site of one sample return (Apollo 15)
and one Lunokhod mission. The ejecta from the Imbrium basin-
forming event has been employed as the lower marker horizon for
the Imbrian System (e.g., Wilhelms and McCauley, 1971), thus the
basaltic fill of the basin is Imbrian and post-Imbrian in age.

The purpose of the present analysis was to characterize
the basalt units in Imbrium from photogeolecgic criteria and em-
ploy remote sensing data to identify their compositions and geo-
physical properties.

Geophysical characteristics:

The lunar gravitational field, determined by various

means (e.g., Muller and Sjogren, 1968; Ferrari and Anada, 1977;
Sjogren et al., 1971; Ferrari, 1977), exhibits a positive anomaly
(mascon) over Mare Imbrium and negative anomalies over Sinus Iri-
dum and the Apennine Mountains. The Bouguer anomaly over Imbrium
is +350 milligals at 100 km altitude (Thurber and Solomon, 1978),
comparable to anomalies over Serenitatis and Crisium. The non-
uniqueness of the inversion of the gravity data has resulted in a
number of contradictory models to account for the mascons (sum-
marized by Thurber and Solomon, 1978) but the most likely model

is one that assumes both mantle relief and a near-surface mass ex-

cess (mare fill). Both Bills and Ferrari (1977) and Thurber and
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Solomon (1978) derived values of between 25 km and 35 km for the

crustal thickness beneath Imbrium, compaxed with an average lunar

crustal thickness of about 70 km. Ferrari et al. (1978) proposed
tha he Apennine region is.isostatically uncompensated and is
underlain by a crust 10 km thicker than the lunar crustal mean.
Additionally, Thurber and Solomon{ 1978) argued that a minimum of
3 km basalt thickness is required in the Imbrium basin, assuming
that it is the sole source of the superisostatic mass.

Maps of the lunar magnetic field show the Imbrium area
to have a low, fairly uniform (range 0.4_X) field strength
(Sharp et al., 1973; Russell et al., 1974). The strength recor-
ded at the Apollo 15 site was the lowest (3.4 * 2d9x) obtained
surface value (Hood et al., 1979) but it did exhibit a strong ra-
dial component (Schubert et al., 1974). The anisotropy of the
Apollo 15 field has been suggested to be possibly associated with
deep faults concentric to the Imbrium impact basin (Schubert et
al., 1974) or to a lower electrical conductivity beneath the mare
as a result of more rapid cooling of the submare mantle and the
depletion of radiocactive elements relative to the sub~highland
mantle (Dyal and Daily, 1979).

Lunar altimetry data (Kaula et al., 1973) shows that the
Imbrium surface has a mean elevation of -4.1 km relative to a

1738 km radius sphere, while harmonic analysis indicates a -2.0

to -2.5 km altitude relative to a 1737.42 km radius sphere (Bills
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and Ferrari, 1975). The altimetry data suggest that the surface
of Imbrium is at a higher elevation than both Serenitatis and
Crisium, however, only the southern part of Imbrium was overflown
by Apollo (Lucchitta and Boyée, 1979).

Radar studies of Imbrium (Schaber et al., 1970; Schaber
et al., 1975) show that the average intensity of the 3.8 and 70 cm
polarized and depolarized returns varies both with age and composi-
tion of the surface basalt units; increasing with increasing age
and decreasing with increased iron and/or titanium content.

Orbital geochemistry:

Gamma-ray data for the Apollo 15 groundtrack over southern
Imbrium was deconvolved (Metzger et al., 1979a) to produce thorium
values of 3.4 to 3.6 ppm for the southeast Imbrium surface, 1.7 ppm
for Palus Putredinis, and + 9.0 ppm for the ejecta blankets of
Timocharis, Archimedes, Autolycus and Lambert. The high Th values
(relative to mare basalts) for the Imbrium surface were attributed
to a 20-24% admixture of medium K Fra Mauro basalt to the regolith.

The gamma-ray data also indicate a general increase of TiO, wt%

2
along the groundtrack from east to west with values of 0.8 to 1.7%
in the east to greater than 4.2% in the west (Metzger et al.,
1979b) . This is matched by a similar Fe wt% variation for the same
area of from 10 to 14% and a potassium variation of 1500 to 2300

ppm (Metzger et al., 1979b; Bielefeld et al., 1976).

X-ray fluorescence data is only available for the extreme
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southeast corner of Imbrium but appears to show that at this lo-

cation the mare surface has a very low Al/Si ratio (< 0.29), a

low Mg/Si intensity ratio of 0.64 to 0.69, and a low Mg/Al inten-

sity ratio of 1.07 to 1l.16 (Andre et al., 1977). These compare

with Mg/Si values of + 1.0 and Mg/Al values of + 1.3 for Sereni-
tatis and Tranquillitatis (Bielefeld, 1977). Combined with the
gamma-ray data, the evidence from the XRF data indicates that
the Imbrium flows are Fe-rich, Mg-poor, medium to high titanium
basalts. The present authors will show that these compositions
do not represent the entirety of the Imbrium surface basalts.
Data from the « -particle experiment show an increased

decay rate for 210Po at the edge of Imbrium (4.6 £ 3.1 x 10-3

cts/sec) relative to the center (2.3 * 4.2 x 10_3 cts/sec)
(Bjorkholm et al., 1973). These values are about half those of
Mare Fecunditatis but equivalent to those of Serenitatis and
Procellarum.

The low surface resolution of the orbital geochemical ex-
periments and the incomplete coverage of Imbrium preclude detailed
comparison of the derived data with individual surface units. At
these low resolutions, however, it is apparent that there are geo-
chemical differences in the surface materials of the mascon maria
and non-mascon maria.

Basalt stratigraphvy:

The U. S. Geological Survey quadrangle maps of the Im-
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Table 1 Spectra locations and types as illustrated in figure 1a. The

spectra type is based on Pieters(1978) while individual spectra
are described by Pieters and McCord(1976).
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brium area have been combined into the geological map of the
near side of the moon by Wilhelms and McCauley (1971) while So-
viet maps have been published by Markov et al. (1974). The
stratigraphic relationships of the'youngest basalts in Imbrium
have been mapped by Fielder and Fielder (1971), Schaber (1973),
Todhunter (1975), and Saito (1977) while Boyce and Dial (1975)
determined the relative ages of the surface units.

The present analysis combines data from spectral reflec-
tance measurements, spectral vidicon imagery, color photography,
albedo measurements, crater statistics, lunar sample analyses,
and photogeologic analysis of Lunar Orbiter, Apollo, and earth-
based photographs to determine the stratigraphic evolution of
Mare Imbrium. Spectral reflectance measurements employed were
those of Charette et al. (1974), Pieters and McCord (1976), and
Pieters (1978): the surface locations of the areas investigated
are shown in figure 1 and tabulated in table 1. Multispectral
vidicon imagery employed was that of McCord et al. (1976, 1979)
and Johnson et al. (1977a, b). Color photography was from Whit-
aker (1972), while albedo values were derived from Pohn and Wil-
dey (1970).

The basalt units mapped within Imbrium are illustrated in
figure 2; Unit 1 representing the oldest and Unit 10 the youngest
flows. A further unit designated as obscured is masked by ejecta
from the craters Copernicus and Eratosthenes. The surface areas
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Table 2 jareas of the basalt units within Mare Imbrium defined in this

paper.

Area
10°

.1.98

0.77
2.24
0.38
0.55
0.16
0.83
1.20
0.07
0.21
0.09

8.48
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9.08
26.42
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6.49
1.89
9.79
14.15
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occupied by each unit are outlined in table 2.
Unit 1:

This unit occurs to the extreme west of the area mapped
and is part of the Oceanus Procellarum infill. Unit 1 has been
described in detail by Whitford-Stark and Head (1980) and, al-
though apparently the oldest unit exposed at the surface near
Imbrium, it is not the oldest surface unit in Procellarum. Simi-
larly it does not appear to be as old as mare basalts returned
from some landing sites (e.g., Turner, 1977; Nyquist, 1977). Al-
though the evidence is rather circumstantial, it is proposed that
the earliest mare basalt units erupted in Imbrium are nowhere ex-
- osed at the surface, but rather have been covered by younger
basalts. This conclusion negates attempts to define a period
between basin formation and lava filling on the basis of crater
counts (e.g., Hartmann, 1967) on surface basalts.

Unit 2:

Although spectral reflectance data (Pieters and McCord,
1976; Pieters, 1978) indicate Unit 2 to be similar to Unit 4 lo-
cated immediately to the south, relative dating (Boyce and Dial,
1975) suggests Unit 2 to be slightly older than Unit 4 while
vidicon imagery shows Unit 2 to have, on average, a higher Tio2
content (McCord et al., 1976; Johnson et al., 1977a). According
to Pieters (1978), Unit 2 has a TiO, content of less than 1.5

2
wt% while according to Johnson et al. (1977b) it has a TiO, con-

- 2
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Figure 3. Lunar Orbiter photograph of northeast Imbrium showing the
sinuous rilles developed within Unit 3. The abrupt
termination to the south(arrow) results from flooding by
a younger Unit 7 flow. Scale bar is 20 km.
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tent generally less than 2.0 wt¥%, but locally exhibits values of
2.0 to 3.0 wt%. Unit 2 is defined (see Head et al., 1978) by a
high albedo (0.09 to 0.102) (Pohn and Wildey, 1970), a reddish
color on infrared-ultra-vioiet composite photographs (Whitaker,
1972), a low u.v./visible ratio (less than 0.99) (Pieters, 1978),
and a high crater density. DL values (see Soderblom and Lebofsky,
1972 for discussion) are greater than 250, a value which suggests
an age of 3.5 t 0.25 b.y. (Boyce, 1976). A spectrum obtained
within Unit 2 (figure 1, table 1) exhibits a strong 1 pm band
(Pieters, 1978) indicative of a high Fez+ content in the glass,
pyroxene, or olivine (Adams and Ralph, 1977). The available data
thus characterizes Unit 2 as being a relatively old, low-
titanium, possibly iron-rich basalt.

Unit 3:

Located solely in northeast Imbrium, Unit 3 has been
previously described (Pieters, 1978) as a low titanium basalt.
Vidicon imagery and u.v.-i.r. photography, however, show the unit
to be a medium to high (2.0 to 6.0 wt% Tioz: Johnson et al.,
1977b) with spectral characteristics similar to Unit 9. High
DL values (+250) (Boyce and Dial, 1975) and the abrupt termina-
tion of a rille within Unit 3 at the boundary with Unit 7 (fig-
ure 3) demonstrate Unit 3 to be older than Unit 9. Unit 3 also

differs from Unit 9 in having a high albedo (0.09 to 0.108; Pohn

and Wildey, 1970). It was not possible to separate units 2 and 3
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on the basis of relative age (3.5 t 0.25 b.y.) so they could

represent synchronous eruptions of basalts with differing compo-
sitions.

Unit 4:

Two different spectra have been obtained for Unit 4

(figure 1, table 1) which may imply that it is laterally inhomo-
geneous. Spectrum 7 is, however, from an area partly obscured by
ejecta from the nearby crater Aristillus. It is therefore be-
lieved that spectrum 16 is more representative of the Unit. Unit
4 occurs in three areas of northeast Imbrium which are separated
by flows of younger basalts. It is quite possible that the three
areas were, therefore, originally continuous. Spectral reflect-
ance and vidicon imagery denote Unit 4 to be a low titanium ba-
salt with less than 1.5 wt% Tio2 (Pieters, 1978) to less than

2.0 wt% Tio2 (Johnson et al., 1977b). The unit has a high albedo
(0.09 to 0.102; Pohn and Wildey, 1970) while combined u.v.-i.r.
photographs show it to have a reddish color (Whitaker, 1972). A
strong 1 pym band in the spectra implies a high Fe2+ glass, oli-
vine, or pyroxene concentration (Pieters, 1978) while D_ values
in the range 250-320 (Boyce and Dial, 1975) again indicate an age
in the 3.5 £ 0.25 b.y. range, but at the younger end of the range

than Units 2 and 3. The available evidence thus suggests that

Unit 4 is a low titanium possibly high FeO basalt with a rela-

tively old age.
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Figure 4. Lunar Orbiter photograph of sinuous rilles within Unit 4§ in
western Imbrium. Note their elongate source craters and
abrupt termination to the east(right) where they have been
flooded by younger Unit 9 and 10 flows. Flow margins are
arrowed. Scale bar is approximately 20 km.
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Unit 5 is present as a number of spatially separate

areas across a central band of Imbrium (figure 2). The separate
occurrences appear to be of approximately the same age (3.3 t
0.3 b.y.; after Boyce and Dial, 1975) and were possibly origi-
nally continuous since intervening areas are occupied by younger
units. The greater original extent of Unit 5 is documented by
the abrupt termination of sinuous rilles at the boundaries with
younger units (figure 4). The small size of many of the occur-
rences of Unit 5, however, makes correlation a formidable task.
Indeed, a spectrum taken on the floor of Archimedes (27N, 4W) and
immediately west of Archimedes differ from those taken near cen-—
tral Imbrium (Pieters and McCord, 1976). Those in the east ap-
pear to have a slightly higher Ti02 content (1.5 to 3.0 wt%)
than those in the west (less than 2.0 wt%) (Johnson et al.,
1977b) . Additionally, those in the east have a weaker 1 pm ab-
sorption band (Pieters, 1978). The albedos of the separate areas
vary from 0.09 to 0.106 (Pohn and Wildey, 1970). Part of Unit 5§
in western Imbrium has been described in detail as part of the
Procellarum stratigraphic column (Whitford-Stark and Head, 1980).
Luna 17 apparently landed somewhere near the boundary
between Units 5 and 9 in western Imbrium at 38017'N, 35%w (Alek-
seyev et al., 1973). The surface traversed by Lunokhod 1 was

found to be relatively flat with lo to 2o slopes, broken by mare




Tuna 17 Surveyor 5 Survevor 6

Si 20 17.1 + 1.2 8.5 + 1.4
Fe 12 3.8 £+ 0.4 3.9 + 0.6
Ca 8 5.5 £ 0.7 5.2 # 0.9
al 7 6.4 + 0.4 6.5 + 0.4
Mg 7 2.8 £ 1.5 3.7 £ 1.6
Ti 4 2.0 £ 0.5 1.0 £ 0.8
K 1 n.d. n.d.

Na - 0.47 + 0.15 0.6 + 0.24

Table 3 Comparison of the Luna 17 surface preliminary geochemical
analysis (from Kocharov et al, 1971) and the surface analyses
at the Surveyor 5 and 6 sites (Turkevich .,1971) in Mare
Trenquillitatis and Sinus Medii respectively. All three are
mare sites. Values are in atom percent.
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ridges 200 to 400 m in height (Florenskii et al., 1971). A pre-

liminary analysis of the basalts at the landing site presented
by Kocharov et al. (1971) is given in table 3 and indicates,
along with spectral evidence, that Uniﬁ 5 is a low titanium,
FeO-enriched basalt.

Unit 6:

Units 6 and 7 were difficult to separate in terms of
vidicon characteristics and geological boundaries but DL values
(Boyce and Dial, 1975) denote an area occupied by Unit 6 to be
older: DL values of 250 to 320 as against less than 250. Pieters
(1978) has also typified Unit 6 as having a less strong 1l pm
band than Unit 7. Unit 6 has a high albedo (0.09-0.106; Pohn
and Wildey, 1970), a red color (Whitaker, 1972), and a low or
very low titanium content (less than 1.5 wt%; Johnson et al.,
1977b).

Unit 7:

Like Unit 6, Unit 7 appear to be a low to very low ti-
tanium basalt (Johnson et al., 1977a). It is possible to define
Unit 7 extremely well since it occurs at the Apollo 15 landing
site in addition to occupying large areas of northeast Imbrium
and Sinus Iridum.

Although spectra indicate the Apollo 15 area to have a
very low titanium content, compositional data on returned samples

(table 4) exhibit TiO_, contents in excess of 1.5 wt% TiO..

2 2




Apollo 15 Apollo 15 Avollo 15

Olivine basalt Pigeonite basalt Green glass

Sio2 44.08 ) 47.98 44 .14
Tio2 2.28 1.80 0.37
A1203 8.38 9.44 7.81
FeO 22.74 20.23 21.05
MnO 0.32 0.30 -

MgO 11.30 8.74 16.72
Cao 9.27 10.43 8.41
Nazo 0.27 0.32 0.13
Kzo 0.04 0.06 0.03
Crzo3 0.85 - 0.48 0.33
Total 99.53 99.78 98.99

Table 4

Analyses of besalts and green glass from the Apollo 15 site
in Mare Imbrium (from Papike and Vaniman, 1978). Values
are in wt%.
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These values are higher than those which define the Very Low Ti-
tanium basalts (less than 1.0 wt% Tioz; Papike and Vaniman, 1978)

and may indicate incorrect calibration of the vidicon data or,

more possible, dilution of the regolith TiO, content by incor-

2
porated low TiO2 green glass (table 4). Statistical analysis.of
geochemical analyses by Pratt et al. (1977) showed that all bar-
ring two basalt samples (15385 and 15388) fell into but two com-
positionally distinct groups designated olivine-normative and
quartz-normative basalts. In a review of Rb-Sr chronology, Ny-
quist (1977) was unable to separate the two groups in terms of
age; the QNB's having an age of 3.35 £ 0.09 b.y. and the ONB's
an age of 3.36 £ 0.04 b.y. He did note, however, that Papanas-
tassiou and Wasserburg (1973) suggest the possibility that sam-
ples 15085 (OﬁB) and 15682 (QNB) might be slightly older than
the other samples.

In spite of the arguments by Ma et al. (1978) that the
green glass and the Apollo 15 basalts are geochemically unrela-
ted, they do appear to be of similar age and were both derived
by volcanic processes (Delano, 1979). Geochemical analyses of
the green glasses led Delano (1979) to propose that they were
derived from five separate magma sources. Furthermore, layering
within the walls of Hadley Rille (Howard et al., 1972) suggests

the presence of several flow units beneath the Apollo 15 site.

Other pyroclastic deposits with different spectral properties to
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the green glass have also been identified in the Apollo 15 area

(Hawke et al., 1979).

Areas of Unit 7 in Sinus Iridum arnd northeast Imbrium
could not have been derived from the same vents as that (those)
at the Apolio 15 site since they are separated by regions of
older basalt. This serves to emphasize that the basalts of Im-
brium, like those of Australe (Whitford-Stark, 1979), were de-
rived from a multiplicity of sources. Additionally, spectral
differences between the Iridum and Hadley areas (Pieters and
McCord, 1976) suggest that, if the apparent low TiO2 of the
Hadley regolith does indeed result from an admixture of green
glass, the Iridum surface may be composed of true VLT basalts.
Unit 8: |

Located to the east of the crater Timocharis and on the
boundary between Imbrium and Serenitatis (figure 2), Unit 8 ap-
pears to be composed of low to intermediate TiO, basalt with a

2
1.5 to 3.0 wt% Tio2 content (Johnson et al., 1977a, b: Pieters
and McCord, 1976). The unit has a high albedo of 0.09 to 0.108
(Pohn and Wildey, 1970) and a reddish color (Whitaker, 1972).
Unit 8 predates the Copernican aged crater Timocharis since sec-

ondary craters from the latter cover it. DL values (Boyce and

Dial, 1975) indicate an age of less than 3.0 to 3.3 b.y. for the

unit.
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Unit 9

This is the most areally extensive (table 2) of the
units herein defined in Imbrium. That part of the unit to the
west side of Imbrium has been described in detail by Whitford-
stark and Head (1980) as part of the Procellarum stratigraphic
column. Unit 9 comprises medium to high titanium basalts with
Tio2 contents in excess of 3.0 wt% (Johnson et al., 1977a, b:
Pieters, 1978). The basalts have a bluish color (Whitaker,
1972), a very low albedo (0.679 to 0.09; Pohn and Wildey, 1970),
and weak 3.8 and 70 cm radar returns (Schaber et al., 1975).
Pieters (1978) concluded, on the basis of an average 2 pm band
absorption, that the regolith of Unit 9 was either enriched in
glass relative to the Apollo 1l regolith, or it contained a FeO-
rich glass.

Although Unit 9 forms a fairly continuous blanket over

western Imbrium, sinuous rilles within it indicate it to have

been derived from several sources. This has probably resulted in

the lateral inhomogeneity of TiO2 content as determined by spec-
tral reflectance (Pieters and McCord, 1976). DL values of less
than 250 (Boyce and Dial, 1975) denote a relatively young age
for Unit 9. Schaber (1973) suggests an age of 3.0 £ 0.4 b.y.

for parts of Unit 9 which correspond to his Phase 1.

Unit 10:

The youngest basalts within Imbrium have been combined
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(figure 2) into a single unit although many separate flows
(Todhunter, 1975) appear to define two main eruptive phases
(Schaber, 1973; Todhunter,A197S). Spectrally, Unit 10 is simi-
lar to Unit 9 (Pieters, 1978) and is a medium to high titanium
basalt with a low albedo (0.079 to 0.096; Pohn and Wildey, 1970),I

a bluish color (Whitaker, 1972), and has low 3.8 and 70 cm radar

et al., 1975). D_ values for Unit 10 are gen-

returns (Schaber et L

erally less than 190 (Boyce and Dial, 1975) implying ages of
less than 3.0 b.y. Schaber (1973) derived ages of 2.7 = 0.3
b.y. and 2.5 £ 0.3 b.y. for his two phases which comprise Unit
10, but Todhunter (1975) obtained older ages for the same unit

by the D_ method; her age for the youngest unit being 3.2 = 0.5

L
b.y.

Obscured area

A large part of southern Imbrium (figure 2) is covered
by ejecta from the craters Copernicus and Eratosthenes. Although
Pieters (1978) mapped this area as being an intermediate basalt
regolith, the high resolution vidicon images (McCord et al.,
1976) show many of the contrasting spectral properties to ke re-
lated to Copernican rays. Similarly DL values (Boyce and Dial,
1975) indicate a variety of ages for this area, as do geological
relationships such as the flooding of Euler ejecta and numerous
sinuous rilles. Since geochemical and flow boundaries cannot be

uniquely defined at present, the entire area has been left as a
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single undifferentiated unit.

Flow thicknesses, depth of flooding, and crater degradation:

Several differen; techniques have been employed to
determine flow thickness and flooding depths of the lunar maria
(e.g., Marshall, 1961; Baldwin, 1970; Neukum and Horn, 1976:
HB8rz, 1978; DeHon, 1979; Head, 1979; Whitford-Stark, 1979), most
of which require a detailed knowledge of local topographic vari-
ation. Within Imbrium such information is available for areas
covered by Lunar Topographic Orthophotomaps but large areas of
Imbrium are not so covered. The present authors have therefore
devised a technique for determining basalt thicknesses for ap-
plication to areas where there is no topographic information.

It was first assumed that the measured craters had rim
heights equivalent to similarly-sized fresh lunar craters which

follow the relationship:-

1) R = 0.036 Dr*%1%  (where D < 17 Xm)
and
2) R = 0,236 D392  (where D> 17 km)

where R is the rim height and D is the rim crest diameter in

kilometers (Pike, 1977). Further expressions have been calcula-
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ted defining the rim width and ejecta blanket radius as functions

of crater diameter and radius as:-

1.01x

3) W =0.257 D ( where D < 17 Xkm)

{ where D > 17 km)

where W is the flank width, D is the crater diameter (Pike,

1977), Rc is the crater radius and Re is the radius of continu-

ous ejecta measured from the crater center (Moore et al., 1974)
(see figure 5). By substitution of eguations 3, 4, and 5 into
equations 1 and 2 it is possible to define the rim height as a

function of ejecta width or flank width, whichever is applicable.

For example&—

W 1.014
log O ._25 7)
exp —_— (where D <17km)

1.01I

and

216 =—/0nnen 00— —1i o 00—




0.399

w
; R, = 0.236 | exp | _ 0-467/ (where D> 17 km)
) 0.836

which define the rim height (R2) as a function of flank width

(W), and
1.014
8) Ry = 0.036 2 exp |19 ( > (where D < 17 km)
~T.o06
and
0.399
[R‘e >
9) Ry = 0.236 2 exp |1°9 %348 (where D > 17 km)
1.006

which define the rim height (R3) as a function of ejecta radius

(Re). 1If a crater has been flooded then Rzor R3should be less

than R. The same applies if the crater is old since the ejecta
blanket will become less readily definable on photographs. The
difference between derived values of R and R2 or R3 is thus a
function of the depth of flooding of the crater and/or its age.
Inaccuracies arise from the actual measurements on the craters
and the scatter in expressions 1 through 5 (defined in Pike,
1977). 1In essence, the technique artificially gives the mea-
sured crater the rim height of a crater of lesser diameter. The

authors believe this to be viable within the accuracy limits of

equations 1, 3, and 5 since, for small craters, these relation-
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ships are reasonably linear. It works less well for larger cra-
ters employing equations 2 and 4 since they are non-linear. Thus
the computational error estimate increases for larger craters
while the measurement error increases for smaller craters. For
example, based solely on the quoted (Pike, 1977) errors for equa-
tions 1 through 5, the approximate errors in derived rim heights
for a 2 km, 10 km, and 50 km diameter crater are * S m, * S50 m,
and * 180 m respectively. Comparison of the calculated rim
height differences and photographs indicates that craters with
differences in excess of 20 m appear to have been par;ly flooded.

A total of 372 craters within Imbrium (figqure 6) were
measured and the derived thickness values are plotted in figure 5
and tabulated in the Appendix. The calculated rim heights ob-
tained from equations 6 through 9 were compared with the rim
heights measured from the Lunar Topographic Orthophotomaps avail-
able for Imbrium and are plotted in figure 7. Although a fair
degree of scatter was obtained, there appeared to be no systematic
under- or overestimate of rim heights. Furthermore, a plot of
depth of flooding against crater diameter (figure 8) indicates
little bias resulting from crater size variations.

Of the craters measured, nearly 27% appeared to be un-
flooded or fresh (figure 5) while the greatest rim height differ-
ences were measured at the craters Wallace and Archimedes K (3CO0

to 350 m). There were four structures that did not have well-
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Qefined flanks; the ring Lambert R, a ring to the immediate north
of Aristillus, a degraded crater to.the immediate west of Mt.
Huygens, and Sinus Iridum._ Assuming these structures to be com-
pletely flooded fresh craters, minimum flooding thicknesses of
1.2, 0.9, 0.85, and 2.1 km respectively were calculated on the
basis of equation 1. These structures, plus possibly Archimedes
and Cassini, are the only visible craters within Imbrium which
could postdate the formation of the Imbrium basin and pre-date
the eruption of mare basalts. This is supported by the spectral
vidicon imagery data which indicates that the majority of the
craters in Imbrium have spectral responses of mare, rather than
highland, craters. Exceptions appear to be the craters Piko K,
Tobias Mayer GA, Eratosthenes A and B, and Wallace B, which have
responses'more typical of highland material. They are all loca-
ted near the mare edge or the sub-basalt extension of an inferred
Imbrium ring. Their calculated excavation depths are 640, 920,
1200, 1080, and 750 meters, assuming them to be fresh craters and

employing the expression:-

10). E = 0,196 D}°%10 (for D <17 ¥m)
where E ig the depth and D is the rim crest diameter in kilome-
ters (Pike, 1977). It is therefore concluded that the lack of

large (greater than 35 km diameter), partly buried craters within
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Fiqure 9 Histograms showing the depths of flooding for each of the basalt
units within Mare Imbrium. The frequency(f) is the number of data
points(flooded craters) within each unit. Note that there is no
significant depth of flooding peak for any unit but rather a spread
from zero to 110 m with mean values in the range of 30 to 40 m.
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Unit
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_Table 5

Mean depth
in meters

29.0
35.7
61.67
41.19
14.29
36.78
38.81
10
23.3
10

Greatest deoth

in meters

80 (max)
35

30
48
40 (max)
82
60
30 (max)
50 (max)

10 (max)

Other data

10-63(2)
60 (1)

30(1)

Estimated thicknesses of the basalts in Mare Imbrium. The
mean depth represents the mean of all the values derived
for a particular unit and tabulated in the Appendix. The
greatest depth represents the maximum values (max) if there
were no depths greater than 100 m recorded for that unit,

or the highest value divided by the number of previous units
if greater than 100 m. The values in the third column
represent thicknesses derived by Neukum and Horn(1) and
Schaber(2) for sites within the respective units.
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Imbrium indicates that the mare basalts are everywhere in excess
of 950 meters in thickness except near the basin edges and over
the submerged rings.

When depth of flooding was plotted as a function of the
basalt unit which surrounds the buried crater (figure 9) it was
found that a wide spread of depth values occurred for each unit.
It was also found, however, that approximately only 4% of the mea-
sured crater population had been flooded to a depth in excess of
100 meters. The most commonly derived flooding values were 30 to
50 meters and are similar to the average values of 30 to 35 meters
derived by Schaber (1973) for the heights of the Unit 10 flow
fronts. The height range of the lobes determined by photogram-
metric methods was 10 to 63 meters (Schaber, 1973). Similar esti-
mates of the thicknesses of the flows are derived if the means of
the data set for each unit are taken (table 5). These values
would imply that the surface units of Imbrium are generally less
than 100 meters in thickness and each coﬁld therefore be the prod-
uct of a single eruptive phase.

Neukum and Horn (1976) have investigated the effects of
lava flooding on crater frequency curves for an area of southwest
Imbrium (Unit 9) and derived a thickness estimate of about 60 m
for the surface unit and approximately 200 m for earlier units.
They also derive a value of 30 m for the depth of flooding at the

Apollo 15 site. Similarly, Eggleton et al. (1974) derived values
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of 75 to 100 m for the depth to a planar layer in northwestern
and central Imbrium.

The process of partial flooding of impact craters poses
problems for age determinations of the mare surface by crater
counting since if the crater is regarded as being on, rather than
being flooded by, a younger unit, an artificially older age would
result for that unit. Figure 10 compares the frequencies of
flooded and unflooded (<« 20 m flooding) craters on each unit. It
can be seen that a significant number pf apparently flooded cra-
ters occurs within each unit.

Although the depth of flooding of visible surface craters
enable estimations of the surface layer thickness in Imbrium, they
do not permit determination of the total basalt pile thickness.
Previously DeHon (1979) has calculated a minimum 1.5 km thickness
for central Imbrium based on crater flooding, Thurber and Solomon
(1978) estimated a minimum basalt £ill of 3 km based on geophysical
arguments, while Settle and Head (1976) estimated an original depth
of 8 to 27 km for the Imbrium impact cavity based on their estima-
ted ejecta volume and assuming a spherical cap geometry for the
excavation. More recently, Head (1979), by artificially flooding
contour maps of unflooded basins, has estimated that the outer
shelves of multi-ring basins are covered by around 2 km of fill
while the average thickness within the peak ring is between 4 and

5 km and may locally be as high as 8 km.
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flooding to estimate £ill thickness is to determine the depth of
excavation of craters which appear to have pierced or not pierced
mare basalts. Metzger et g;; (1979) have argued that the craters
Autolycus, Archimedes, Timocharis and Lambert have excavated
KREEP-rich highland basalts. Lambert, the smallest of these, was
estimated to have excavated to a depth of 3.7 km. At present
there are diverse opinions as to whether the KREEP basalts pre-
date the Imbrium impact event or both pre- and post-date it (see
Schultz and Spudis, 1979). At least in Oceanus Procellarum, non-
mare, though not necessarily KREEP, basalts were erupted simultan-
eously with mare basalts (Head and McCord, 1978) and would argue
in favor of the lattér interpretation.

On the basis of spectral vidicon imagery, the two cra-

ters Helicon and Le Verrier in central Imbrium appear to have

ejecta blankets not inconsistent with mare basaltic material. That

is, the ejecta from Le Verrier has characteristics similar to near-

by Unit 4 and also has a low albedo. If this interpretation is
eventually supported by spectral reflectance data, the excavation

depths of these craters must be less than the basalt thickness.

Employing:-

11) 0.301

E = 1.044 D (for D» 17 km: Pike,1977)
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where E is the depth and D the diameter in kilometers, Le Verrier

excavated to a depth of nearly 2.6 km while Helicon excavated to

2.7 km. It has been previopsly shown, however, that Helicon has
been flooded by nearly 300 m of fill. A minimum thickness for
the fill in the Helicon region is therefore 3.0 km. Furthermore,
since both craters post-date the Iridum impact, the ejecta from
the latter event must underlie the craters and contribute to the

Imbrium fill. The calculated depths of the craters represent the

minimum depth of excavation since equation 11 describes the pres-

ent crater shape rather than the size of the transient cavity

prior to modification by such processes as rebound and slumping

(Settle and Head, 1977). Settle and Head (1979) found that cra-
ters 15 to 30 km in diameter had reconstructed depths greater
than those predicted by small-crater morphology. Employing equa-

tion 10 therefore, the minimum excavation depths and thus minimum

£ill thicknesses are increased to 4.3 and 5.2 km for Le Verrier
and Helicon respectively.
Taking a circular radius commensurate with the total

surface area of basalt (8.5 x lO5 kmz) and assuming a parabaloid

with a depth of 5 km at the center, a minimum estimate of 2.2 x
10% xm® is obtained for the total volume of £ill within the Im-

brium basin. This value represents approximately one fifth of

the total volume of basalt (Head, 1975) estimated to occur on the

moon.



Eruption style:

The surface basalts within Imbrium can be separated
into three types; 1) those with flow lobes and channels, 2) those
with sinuous rilles, and 3) those with neither of the previous
characteristics. These groups are believed to represent three
distinct eruptive styles.

Basalts with lobes and channels are limited to flows of
Unit 10. They appear to represent a unique eruption style on the
moon (Schaber et al., 1976) and have been analysed in great de-
tail. Flows of Unit 10 extend some 600 km from their sources,
have widths of the order of 40 to 60 km, thicknesses of 10 to
60 m, and were emplaced on low slopes (A 0.0023; Schaber, 1973).
Based on laboratory analyses of returned samples (Murase and
McBirney, 1970) and geometric properties of the flows, the ba-
salts had eruption viscosities of the order of 10 Pas (Hulme,
1974), yield strengths of about 100 to 400 N/m2 (Hulme, 1974;
Moore gt al., 1978), and flow velocities of 1 to 14 km/hr (Hulme,
1974; Moore and Schaber, 1975). all th;se characteristics are
satisfied by basalts with exremely rapid eruption rates; Hulme

4

(1974) has estimated flow rates of 8 x 10 m3/s and an emplace-

ment period of about 6 days assuming constant flow, while Schaber
(1973) derived a value of about 10 days.
In excess of 50 sinuous rille segments have been iden-

tified in Imbrium (figure 11) and their lengths are plotted as a
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Rille length/Unit area

10~2

1072

1073

10~3

10”3

10”3

1074

Titanium
concentration

high
low

| high
Intermediate
low
Intermediate
Intermediate
Low
high

Intermediate

Lengths of sinuous rilles within each basalt unit of Mare Imbrium
divided by the area of that unit. The relative titanium
concentrations are on the right. The data are ranked with the
units having the greatest rille density at the top. Unit 1 is
undervalued because all the rilles within it do not occur within
the ares mapped while Unit 10 had a different eruption style
which led to the formation of channels rather than rilles.




function of the unit in which they occur in figure 12. Neglecting

rilles within the obscured area, rilles are most prevalent
within Unit 9. This is undoubtedly partly a function of age
Isince the rilles of progressi&ely older units become more

degraded and flooded. Rille lengths were therefore calculated as

a function of the exposed area of the unit in which they occur
(Table 6). Neglecting Unit 10 which has been previously shown to
have experienced a unique eruptive style and Unit 1 which does
not have rilles in the mapped area, rille density does not appear
to be correlated with unit age and there is but a slight
preference for intermediate units to be relatively rille-depleted.
Both Hulme(1973) and Carr(1974) independently proposed
that sinuous rilles were produced by lava erosion through thermal
incision. Hulme and Fielder(1977) state that the presence of
meanders along the rilles is a result of turbulent flow. They
furthermore imply that rilled flows were emplaced on steeper

slopes than rille-less flows of similar eruption rate. In an

analysis of a Marius Hills flow, Hulme(1973) derived an eruption

4 m3/s, a mean depth of lava of 10 m, a mean flow

rate of 4 x 10
velocity of 8 m/s, and an emplacement period of approximately one

year assuming continuous eruption. These values suggest that

e —————
ey 240




rilled flows are thinner, were erupted at lesser rates, and were

emplaced over a significantly longer time period than channeled
flows of similar vciume.
Basalts which contain neither channels nor rilles may

either have never had such features or those features may have

been degraded or buried. Flows lacking such features are

tend to bury their own vents (Greeley,1976). Unit 4, lacking

both rilles and channels, appears to be one of the thicker flows
(Table 5) and covers an extensive part of the surface area within
the inner ring of Imbriums; both features favoring a flood-style

produced by flood eruptions, are usually thick (+20-30 m), and
eruption.

l___—‘___zl,l_.__________———————_————-_—___
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Sources and flow directions:

Schaber (1973) suggested that the Unit 10 channeled
flows appeared to have beep derived from a single, 20 km long
fissme vent oriented NE-SW within an area bounded'by 18-23N,
28-32W, southwest of Euler. Todhunter (1975) has described nu-
merous volcanic vents within this same area; her list includes 4
cones, 7 crater rows, 5 groups of hills or ridges with summit
craters, 1 shield volcano, and three linear depressions. Tod-
hunter (1975) also suggested that the linear elements of these
vents were aligned either radial or concentric to the center of
Imbrium. All of the Unit 10 flows travelled north to northeast,
toward the center of the Imbrium basin. Schaber (1973) showed
the Unit 9 flows to the immediate east of Sinus Iridum to be de-
rived from this same area of southwest Imbrium. The present map-
ping, however, indicates that these flows were derived from cen-
tral west Imbrium (figure 14) and are nearly half the 1,200 km
length stated by Schaber.

The sources of sinuous rilles tend to be small and of-
ten markedly elongate craters (figure 15). Head and Wilson (1980)
argued that the minimum eruption rates implied by such craters
are of the order of 107 kg/s. Of the 48 rille source craters
that could be identified or constrained within reasonable bounds,
approximately 6% were located in the Highlands, 17% at the mare/

highland boundary, 70% between the inner ring and the mare/high-
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land boundary, 6% at the inner ring, and none inside of the inner
ring. In fact, only five of the sinuous rilles could be traced
inside of the inner ring (ﬁigure 11). fhis could result from
slope reduction making thermal incision less effective (Hulme,
1973), ponding of the lava, or a flood~basalt eruption style.

The lack of central rilles could equally result from all three
factors. Almost without exception, all of the flows travelled
radially toward the center of the mare (figure 14) except where
they were diverted by pre-existing obstacles such as mare ridges.

Structure of the Imbrium basin:

The major tectonic elements of Imbrium include mare
ridges, tectonic rilles, and faults in the adjacent highlands.
The mare ridge system (figure 16) can be separated into that
which forms the approximately 280 km radius inner ring of Imbrium
and, the remainder. A detailed study of the ridges in the Imbri-
um-Procellarum area by Lucchitta (1977) showed that ridges defin-
ing the Imbrium rings were parallel to contours, and often exhi-
bited different mare surface heights on each side. Fagin et al.
(1978) showed there to be a preferential approximately north-
south alignment of ridges within central Imbrium while Schaber
(1973) demonstrated that ridges both predate and postdate the
youngest surface lavas. The present study shows that the ridges
are present in each unit. The oldest ridge material that can be

shown to have influenced the passage of later basalts is in west-
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Figure 17. 0.4/0.56 #m vidicon image of western Mare Imbrium. The
bright area to the right represents the titanium-rich Unit 9. The
dark area(arrowed) represents titanium-depleted basalts forming a
mare ridge around which the younger titanium-rich basalts have
flowed. The bright area to the left is the Heraclides Promontory.

Circuler bright and dark spots are craters. Scale bar is approx-
imately 20 km.,
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Figure 18. Lunar Orbiter photograph of northwest Mare Imbrium showing
a ridge cutting an older sinuous rille(A) and a sinuous rille crossing
an older ridge(B). If the two rille sections were originelly connected,
these relationships would indicate at least two periods of ridge
production. Scale bar is 20 km.
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ern Imbrium near the Luna 17 landing site, where a ridge of Unit
5 material has channeied flows of Unit 9 material (figure 17).
It is possible other such gxamples exist but they must be below
the vidicon imagery resolution. In northwestern Imbrium it ap-
pears that a sinuous rille within Unit 6 crosses a ridge but is
elsewhere cut by a ridge (figure 18). Additionally, the subdued
appearance of ridges in central Imbrium (C in figure 16) within
Unit 4 suggests that the surface basalts partially bury an origi-
nally more extensive ridge system. The period of ridge formation
can therefore be shown to predate the emplacement of Unit 4 and
postdate Unit 10 (3.5 * 0.25 to less than 3.0 b.y.). It is less
obvious whether each ridge segment formed in a singular catastro-
phic event or was produced slowly over a long time period. The
generally non cross-cutting relationships exhibited by the ridges
(see A and B in figure 16 for possible exceptions) suggests that
the stress field influencing their location remained relatively
constant in direction over a long time period.

Tectonic rilles are restricted to east Imbrium (figure
11) at a radius of approximately 580 km from the basin center and
occur largely within the Apennine Bench Formation (Spudis, 1978).
The rilles average 1.75 to 2.0 km in width, though near Cassini
they may be as much as 10.95 km wide. Lucchitta and Watkins
(1978) found that tectonic rille formation terminated on the moon

at about 3.6 £ 0.2 b.y. ago. The present analysis shows that the
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Lunar Orbiter photograph of the Alpine Valley to the

immediate north of Mare Imbrium. Note the sinuous rilles on the
fed basalts that flooded the valley floor while the upper source

valley floor and their source craters(arrowed). The lower source
fed lavas which partly covered the earlier rille on the valley

floor but mainly drained into Mare Frigoris(top). Scale bar is

approximately 20 km.

Figure 20.
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rilles do not cross Unit 6 but do cut Unit 5 (figure 19), both
dated at 3.3 £ 0.3 b.y., in agreement with Lucchitta and Watkins'
result. Although present in Unit 4, rilles are not seen in north-
ern Imbrium within the oldér Units 2 and 3. 1If these early units
have been correctly dated, it would imply that crustal conditions
were inimical to rille production in that area; possibly a result
of a locally thicker lithosphere (Head and Solomon, 1980).

A number of linear structures are distributed radially
and concentrically to the Imbrium basin (Mason et al., 1976).
Some of these appear to be of sedimentary origin (resulting from
the emplacement of the Imbrium basin ejecta) (Head, 1976) while
others such as the Sirsalis linear (Whitford-Stark and Head,
1980) and the Alpine Valley are tectonic in origin. The Alpine
Valley (figure 20) is some 130 km long, averages 10 km in width,
and is floored by basaltic material. The location of the Valley
toward the pole and the massif at its southern end render it dif-
ficult to determine the basalt composition. There is a slight
suggestion from the vidicon images that it is titanium rich. Two
possible sinuous rille source craters have been identified in the
Valley (figure 20). The older, located at the southern extremity,
fed north-flowing lava while the younger erupted basalts which
partly covered the earlier rille but mainly drained into Mare
Frigoris. Vidicon imagery (Johnson et al., 1977) of basalts

within the highland area to the east and west of Plato, and part
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of the floor of Plato itself, shows them to be intermediate to
high titanium basalts. These units have been assigned variable
ages (Ulrich, 1969; M'Gonigle and Schleicher,.l972) and some may
be as young as the youngest Imbrium lavas.

Summary:

Followinj the formation of the Imbrium multi-ring ba-
sin at approximately 3.9 b.y. ago, the cavity began to fill with
basalt. An estimate of the minimum final £ill volume being 2.2
X 106 km3. Early eruptions were possibly of KREEP composition.
Initially, the mare basalts were probably concentrated and erup-
ted within the inner ring. None of this thick (+5 km) basalt
assemblage appears to be represented by exposed surface units.
The oldest (3.5 * 0.25 b.y.) exposed basalts occur largely out-
side of the inner ring where their relative altitude has preven-
ted flooding by younger units. Their composition range is from
intermediate to high titanium basalt. An older, possibly Very
Low Titanium basalt, occurring in Procellarum at the Aristarchus
Plateau, may underlie younger units in western Imbrium. The pro-
duction of tectonic rilles terminated during the eruption of these
early units (2-4), reflecting a possible increase in lithosphere
thickness.

The remaining units (5-10) all appear to have been de-
rived at or exterior to, the inner Imbrium ring and to have flowed

toward the basin center. These units all appear to be less than
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100m in thickness and to average 30 to 40 m thickness. They range

in composition from very low to high titanium basalts.

Mare ridge productiop appears to have been a continuous,
though possibly episodic, process which commenced at least prior
to the eruption of Unit 4( 3.5 + 0.25 b.y.) and continued after
the eruption of the youngest lavas(<3.0 b.y.).Young basalts

located in the highlands adjacent to Imbrium appear to be fault-

related and may result from the opening of channels in the crust

as a consequence of the downwarping of central Imbrium (Solomon

and Head, 1979).
Unlike Oceanus Procellarum(Whitford-Stark and Head, 1980),

there appears to be no simple composition - age relationship

between the 10 basalt units identified in Imbrium. Basalts of
widely varying composition appear to have been synchronously

erupted. The identification of numerous vents (+ 50) over a

2

850,000 km“ area suggests a widespread subcrustal reservoir for

the basalts though does not exclude the possibility of numerous
small magma reservoirs, each producing its own compositionally

unique basalt.
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APPENDIX

Catalog of the morphometric parameters of 372 craters within
Mare Imbrium. R is the predicted rim height from equation 1 of
the text. R, and R3 are the rim heights predicted from equations
6 through 9 of the text. R3 values are indicated by *. F is the

dépth of flooding. E is the excavation depth determined from

equation 11 of the text. The symbol # denotes unreliable data

due to unusual crater shape.
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STORMS AND RAINS: A COMPARISON OF THE LUNAR

MARE TIMBRIUM AND OCEANUS PROCELLARUM

J.L.WHITFORD~-STARK

Dept of Geological Sciences
Brown University
Providence, R.I., 02912, U.S.A.




ABSTRACT

The origin and development of the irregular Oceanus
Procellarum and circular Mére Imbrium is compared. Imbrium
is shown to be a deeply flooded( 3 to 8 km), multi-ring
basin with a complex eruption history involwving at least
ten major basalt units with no apparent simple chemical
trend. Procellarum is hypothesized to be a down-faulted
region of highland crust; the motion a direct result of
the Imbrium basin-forming event. The basalt £fill in
Procellarum is thin ( average 550 m) and is separated
into four chemically distinct formations. KREEP basalts
formed an important additional component of the early
£fill of both basins. Breccia fragments returned from the
landing sites indicate pre-basinal basaltic volcanism. In
both maria the youngest basalts were erupted from vents
near the periphery and the styles in both were similar
though. Procellarum lacks the young, titanium~rich,short-
duration, flood-style basalts of Imbrium and contains
three unique volcanic complexes. Basalts of differing
chemistries were synchronously erupted in each mare.

The tectonic evolution of both maria was similar;
mare ridges being synchronously produced and graben
formation terminating at 3.3 + 0.3 b.y. in both. The
distribution of the tectonic products in both maria
differed as a result of the different distribution of the

basalt loads and crustal thickness variations. The sub-

;______________.“290___—_——-—_________——-—_—_4—————-———




Procellarum lithosphere being less than 25 km thick at the
time of graben production while that of Imbrium being

50 to 75 km thick. Currently available models for mare

basalt petrogenesis do not satisfy the remote-sensing

and photogeologic observations of basin filling.

291 =




Introduction:

Mare basalts flood the topographically low areas
of the lunar surface; the majority of these lows were
circular basins, though irregqular, non-basinal areas
were also flooded. It appears that a lunar crustal
thickness asymmetry (Kaula et al,1972 ) has led to the
preferential emplacement of mare basalts on the lunar
near side which overall, relative to a 1738 km radius
sphere, is lower than the far. The purpose of this paper
is to outline the development of a circular and a non-
circular mare area in terms of the volumes and chemistries
of erupted materials, the chronology of eruptions, and
the varying styles of volcanism. The evolution of the
basaltic £ill is further related to the tectonic history.
Mare Imbrium is used as the type.example of a circular
mare and Oceanus Procellarum, the irregular mare. The
basaltic fill of other lunar maria are employed to illust=
rate specific points which, because of a lack of data,

cannot be made by reference to Imbrium and Procellarum

alone,

Morphology of the basins prior to mare flooding.

The presence of isolated peaks and mare ridges

forming circular patterns plus a mountain ring denote

Imbrium as a multi-ring basin (figure 1), There is little
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agreement as to which, if any, of the rings represents
the rim crest of the original cavity of excavation (see

for example, Head,1977; Hodges and Wilhelms,1978) .Further-
more, there is a great divergence of opinion as to the
depth/diameter ratio of the transient cavity; proposed
values include less than 1/5 (Settle and Head,1976), 1710
to 1/15 (Hodges and Wilhelms,1978), 1/33 (Chao,1977), and
1/113 (Pike,1974). Rock fragments in Apollo 17 breccias
appear to be derived from depths of about 60 km (Warner

et 2l,1978). If this represents the maximum excavation
depth of Serenitatis and the second ring, with a diameter
0f 610 km (Head,1977), represents the original transient
cavity rim, a minimum'depth/diameter ratio of 1/10 is
derived. Applying this value to the Imbrium cavity would
indicate an excavation depth close to 100 km based on the
970 km diameter intermediate ring(Head,1977). Rebound,
collapse, and deposition of impact melt would have shallowed
this cavity essentially instantaneously. The present height
differential between the outer scarp and the center of Mare
Orientale is approximately 9 to 10 km while it has been
estimated ( Head,1974) that impact melt and mare basalt
infil central Orientale to a depth of about 2 km. These
data suggest a post-impact depth of the order of 12 km for
the Orientale multi-ring basin. The complexity of the
processes involved in post transient cavity modifications
of such large basins render it difficult to define whether
the resultant cavity scaled to the size of the tasin or

whether an approximately similar depth was achie ved in
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each. The present height differential between the Imbrium
mountain ring and the mare center is about 7 km. Reasonable
estimates of the fill thickness at the center of Imbrium
fall in the range of 3 to 8 km (Thurber and Solomon,1978:
Baldwin, 1963; Head, 1979; Whitford-Stark and Head, 1980b).
Post modification depths of Imbrium and Orientale appear
therefore to have been comparable despite the fact that the
latter was only two thirds the diameter of the Imbrium
transient cavity.

An estimate of the amount of impact melt contributing
toward the early basin £ill can be made by extrapolation
from terrestrial craters (Head,1974) with the proviso that
less melt was produced in comparably-sized lunar craters:
Hawke and Head(1979) proposed that the volume of impact
melt in lunar craters was 15 to 44 % that of terrestrial
craters. Employing the curves in Head‘s(1974) paper, the

6 km3

volume of impact melt in Imbrium is of the order of 10
and has a thickness approaching 2 km.

Other contributions to the early post-impact £fill were
made by ejecta from large craters and basins. The only basin
to post-date Imbrium was Orientale. Employing a diameter of
620 km for the Orientale impact cavity (Head,1974) and the
equation describing the variation of ejecta thickness of
McGetchin et al (1973), less than 2 m of Orientale ejecta
would ke found at the center of the Imbrium basin. A more
significant contribution to the £ill of Imbrium would have

been the ejecta of the Sinus Iridum impact. This event,

however, appears to be of mid-Imbrian age (Ulrich,l1969) and
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Fiqure 2 Location of possible basins in and around Procellarum

and Imbrium(i) based on the work of De Hon(1979). There appears
to be good evidence supporting the existence of the south
Imbrium basin(F), Cognitum basin(G), Humorum basin(H), and the
cast and west iubium basins(J,K). Evidence for the existence of
basins B, C, D, and E is minimal and discussed in the text.




possibly post-dates early mare basalt eruptions.

The pre mare basalt morphology of the irregular Oceanus
Procellarum is less readily defined. Three alternative
scenarios have been proposed: 1) that Procellarum was a
series of 6ver1apping basins (De Hon, 1979), 2) that
Procellarum lies within what was a very large early basin
called Gargantuan (Cadogan,l1974), and 3) that Procellarum
was tectonically lowered following the Imbrium impact (
Whitford-Stark and Head, 1980 c¢).

The existence of large craters and basins prior to
mare flooding in southeast Procellarum can be readily
recognized from remanent rim material (e.g.,Hawke and Head,
1977) . Such an identification is less readily made in
central Procellarum since there is an apparent total lack
of unflooded highland material (Whitford-Stark and Head,
1977 a). De Hon (1979) has located four large basins in
the central Procellarum area ( figure 2) on the basis of
calculated basalt thickness variations. The paucity of
data points, lack of consistent thickness variations, and
lack of any supplemental evidence lead the present author
to question the existence of such basins. Furthermore it
is not necessary to invoke the presence of a basin to
account for a topographic low; there is no evidence for
the presence of any basins along the entire length of the
irregular western Mare Frigoris (Whitford-Stark and Fryer,
1975).

The wvalidity éf the Gargantuan basin (center at 29w,

23 N) cannot be definitively resolved. If such a structure
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did exist, its diameter of 2400 km (Cadogan,l1l974) would
make it the largest impact structure so far recognized on

the Moon ( or, for that matter, any other solar system body):

400 km greater than the South Pole-Aitken basin (Stuart-

Alexander,1978) and approximately twice the size of Imbrium.
The most compelling evidence against the Gargantuan basin
hypothesis is that its existence presents difficulties in
accounting for the present topographic wvariation of highland
terrain around Procellarum. Specifically the highlands are
topographically high in the southeast quadrant of what would
have been the Gargantuan basin (the Fra Mauro area) but are
completely buried in the central Procellarum area { except
at the anomalous Aristarchus Plateau) which is equidistant
from the proposed basin center. It is therefore necessary
to invoke an additional mechanism to account for the height
variations around Gargantuan. Smaller basins superimposed
on the Gargantuan basin would satisfy this condition but
then the same arguments used against the De Hon model arise.
In summary, although the former presence of the Gargantuan
basin cannot be disproved by the present author, its presence
requires further modifying parameters which alone may sat-
isfy the observed characteristics of Procellarum.

The model favored by the present author is one which
requires Procellarum to be a tectonic basin: essentially
a large graben structure. This graben was initiated as a
direct result of the Imbrium impact event. Assuming the
Imbrium transient cavity to have a radius of 480 km, a

depth of 100 km, and a parabaloid shape, the volume of that
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cavity would have been approximately 3.6 x 107 km3. Post-
impact modification then led to the production of a multi-
ring basin with a radius of about 670 km and a depth of 15
km. Again, assuming a parabaloid shape, the volume of this

7 km3.

multi-ring basin cavity is approximately 1.0 x 10
Neglecting the fallback of ejecta, lunar curvature, and
appreciating that these are order of magnitude estimates,
the volume defficiency between the transient cavity and

7 xm3. This

multi-ring basin is approximately 2.5 x 10
volume corresponds to a circular plate with a radius of

1,000 km and thickness of 8 km or a cylinder with a 480 km
radius and 35 km height, A substantial quantity of subsurface
material was therefore required to facilitate the transit-

ion from the transient cavity to the multi-ring basin. This
material would probably have been derived from both directly
beneath the basin and by sub-lithospheric flow from surround-
ing areas (Hulme,1974a). Phase changes accompanying the change
in depth of this sub-lithospheric material would lessen the
total volume of material required to infil the transient

cavity. This process, plus the presence of an extremely thin
lithosphere(less than 25 km) beneath Procellarum(Head et al,
1980) might have been the cause of significant vertical(
Whitford-Stark and Head, 1977a) and horizontal (Whitford-Stark
ana Fryer,1975) motions of the circum-Imbrium lithosphere.

The origin of the Procellarum topographic low is therefore
ascribed to downfaulting of the lunar highlands as a conse-
quence of sub-lithospheric flow of material toward the Imbrium
transient cavity. The effects of this process are not noticeable
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to the east of Imbrium because of the prior-existence of the
Serenitatis and Tranquillitatis basing and a thicker lithosphere
to the east., - The magﬁitude of the downfaulting varied
around Procellarum, being greatest in the central section
and least in the southeast. It is difficult to place wvalues
on the actual displacement because of topographic variation
through the highlands resulting from the presence. of pre-

displacement impact craters. If the buried parts of the

walls of craters such as Letronne and Repsold C are topo-

graphically low because they were down-dropped, the magni-
tude of the displacement may have been of the order of

500 m to 1.0 km. It is necessary, however, to bear in mind
that subsidence also resulted from the emplacement of mare
basalts and therefore the final’displacement is a combin-

ation of both mechanisms.

Age of the topographic lows:

The age of the Imbrium cavity can be determined
both stratigraphically (e.g.,Hartmann and Wood,1971;Wilheilms,
1979) and by radiometric dating of returned samples. Rocks
returned from the Apollo 14 site were considered to be ejecta
from the Imbrium cavity although a substantial volume of
locally-derived material may be present at that site(Oberbeck
‘et al,1974; Hawke and Head,1977). The ages of the Apollo 14
rocks have been summarized by Turner(1977) and Nyquist(1977)
who quote ages for the Imbrium impact event of 3.95 + 0.04
b.y., 3.90 +# 0.05 b.y., and 3.88 % 0.04 b.y. 2n alternative




argument by Schonfield and Meyer(1973) is that the majority

of the Apollo 14 rocks are not Imbrium ejecta and that the

formation of the Imbrium basin pre-dates the initial

extrusion of KREEP basalt at 4.3 to 4.4 b.y. Although their
argqument has some attractive qualities, it doés not appear

to explain the lack of non-mare rocks with ages greater than
about 4.0 b.y. (Turner,1977) at the Apollo 15 site close

to an Imbrium ring. It is extremely unlikely that no Imbrium
ejecta or Imbrium ring material was collected at that site.
Similarly Imbrium is stratigraphically younger than Serenit-
atis yet the non-mare boulders at the Apollo 17 site cluster
in age around 3.98 + 0.03 b.y.(Turner,1977; Nyquist,1977)

and more recently ages of 3.87 + 0.03 b.y. have been obtained

on breccia samples(Staudacher et al,1979). Again it is

extremely unlikely that no rocks related to the formation
of the basin were collected from the Apollo 17 site where
the Serenitatis ejecta has been estimated (McGetchin et al,
1973) to form a layer in excess of 1500 m thick. Additionally,
although mare basalts were probably erupted prior to the
formation of all the large basins, no presently observed
mare surface has a crater density or crater degredation
age in excess of 4.0 b.y. Although the earliest erupted
basin-filling basalts are undoubtedly buried by vounger
flows, it would seem too co-incidental to find not one
basalt surface with an age in the range 4.0 to 4,3 b.y.

It is therefore concluded that the majority of available
evidence points to the formation of thé Imbrium impact

cavity at about 3.9 b.y. ago. Since Procellarum is here
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envisaged as a direct product of the Imbrium basin-

forming event, the production of the Procellarum topo-

graphic low is considered to closely follow 3.9 b.y.

Composition of the early basin f£ill:

The eruption of mare basalts did not commence at
the same time that the formation of large multi-ring
basins terminated; there is now abundant evidence for
pre-Imbrium basin mare basalts. The earliest mare basalts

(10003,10029) returned from 2 mare landing site have an

age of 3.90 + 0.03 b.y. (Guggisberg et al, 1979). The

extrusion of these basalts in Tranquillitatis therefore
took place at approximately the same time as the form-
ation of Imbrium and may have pre-dated it.
Other direct evidence of pre-basinal volcanism is
provided by KREEP basalts and fragments incorporated
within breccias (Ryder and Spudis,1979). KREEP basalts
(15382,15386) from the Apollo 15 site have been assigned
crystallization ages of 3.94 + 0.0l b.y.(Nyquist et al,
1975) and 3.85 # 0.08 b.y. (Carlson and Lugmair, 1979)

and so are also of similar age to the Imbrium impact
event, KREEP basalts may therefore represent some of the
earliest lavas lining the Imbrium cavity (Spudis,1978).
The large thorium contents associated with large south-
east Imbrium craters(e.g., Lambert,Timocharis,Archimedes)
indicate. KREEP underlies a significant area of mare

basalt(Metzger et al,1979). Furthermore, a pvostulated
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correlation with red spots(Malin,1974), the presence of
KREEP fragments in the Apollo 12 regolith, at the Apollo
14 site, and as KREEPy fragments in Apollo 17 breccias
(Norman and Ryder,1979) suggests a widespread distribution
for KREEP basalts on the Moon. Although major concent-
rations of KREEP are found in the Imbrium-Procellarum
region, Spudis(1979) has argued, on the basis of high
radiocactive element concentrations derived from orbital
gamma-ray data, that KREEP materials are also widespread
on the lunar farside. Variations in initial strontium
isotope ratios(Meyer,1977) indicate that KREEP was derived
from several discrete eruptions. If, as Malin(1974)
proposed, the Gruithuisen domes in Procellarum are KREEP
extrusions, an age of 3.3 to 3.6 b.y. assigned to them
(Head and McCord,1978) would mean that KREEP volcanism
also postdated the eruption of mare basalts. Warner et al
(1977) argue that the earliest KREEP rocks must post-date
the formation of "feldspathic granulitic impactites" since
those rock contain essentially no KREEP component. The age
of KREEP volcanism is thereby constrained to a period
extending from about 4.1 b.y. to possibly 3.3 b.y.

Other fragments with mare basalt affinities have been
recovered from the lunar breccias(e.g., Ryder and Taylor,
1976: Blanchard and Budahn,1979) dated at 3.87 + 0.03 b.y.
(Staudacher et al,1979). Like samples of post-basin mare
basalts, these older basalts exhibit a divergent chemistry
with TiO

5 concentrations ranging up to 7 wt%. Further
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materials that may have been extruded at the lunar surface

include those variously described as quartz monzodiorite,
monzonite, felsite, and granitic. These appear to have
been volumetrically small and derived as immiscible
liquids(Rutherford et al,1976).

Photogeologic evidence for the possible existence
of pre-basinal volcanic deposits is the existence of dark
halo craters thought to excavate mafic extrusive material
from beneath basin ejecta(Schultz and Spudis,1979) and
the presence of plains deposits of possible volcanic origin
within old basins(Gifford and E1-Baz,1979). Although not
all plains deposits are volcanic, as was found out at the
Apollo 16 site, morphologic criteria alone are not capable
of distinguishing their mode of origin(Whitford-Stark,1980).
Moonwide orbital geochemical remote sensing may possibly
resolve this problem. At present it is only possible to
state thgt the plains and dark halo material, if of volca-
nic origin, indicate the former existence of an early
moonwide volcanic episode.

In summary, eruptions of KREEP and mare basalt appear
to have taken place at the lunar surface possibly 200 million
years prior to the formation of the Imbrium basin. Syn-
chronous eruptions of basalts with extremely divercgent
chemistries were possibly accompanied by minor eruptions
of more silicic magma. The Imbrium-Procellarum region
apvears to have been a particularly favorable area for
KREEP basalt eruption at akout the time of the Imbrium [

basin-forming event and such materials prokably underlie
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and interdigitate with mare basalts in both maria.

Location of early vents:

In neither Procellarum nor Imbrium can the extrusion

sites of early basalts be identified; either because they

have been eroded or obscured by later deposits. The

location of vents in multi-ring basins appears to have

been largely dependent on the time interval between the

impact event and the initiation of basalt eruption. At

one extreme stands Mare Australe where the observed surface

basalts apvear to post-date basin formation by a signif-

icant period and at the other is Mare Orientale where

basalt eruption appears to have closely followed the

impact event. This scenario is complicated by the fact

that, because of the increased early impact flux, the

older basins were degraded at a much more rapid rate than
the later. As purely hypothetical examples, a basin produced
4.1 b.y. ago may have been totally destroyed by 4.05 b.y.
while a basin formed at 3.85 b.y. may be preserved in
relatively pristine condition to the present. In Australe,
mare basalts have been erupted within nearly 200 separate
craters superimposed on the degraded ring structure (
Whitford-Stark,1979). Apart from the fact that early erupt-
ions:appear to have been preferentially located near the
basin center(figure 3), the structure of the basin appears

to have played but a minor role in determining vent
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the location of vents and distribution of erupted
products was strongly influenced by the basin morphology
(figure 4). The earliest basalts in Orientale occupy the
basin center, have no obvious vents, and appear to be at
least 1.0 km thick (Greeley,1976). Further basalts were
erupted in Lacus Veris between the basin center and the
Rook Mountains. These basalts contain sinuous rilles and
shield-like structures and appear to have originated frcm
vents at the Rook Mountains (Greeley,1976). The youngest
eruptions in Orientale were small patches of basalt
emplaced in Lacus Autumni between the Rook and Cordillera
Mountains. Like those of Lacus Veris, the Autumni basalts
contain sinuous rilles suggesting similar, though volum-
etrically smaller, eruptions (Greeley,1976).

The relative youth of the Imbrium basin, the short
(if any) time period between basin formation and basalt
eruption, and the relativelvw
ring structure, combine to suggest that Imbrium was more
akin to Orientale than Australe in terms of vent and early
basalt distribution. That is, early basalts were erupted
within the basin center and from the rings to infil the
inter-ring topographic lows. The great thickness of basalt
in Imbrium precludes identification of any possible large
(greater than 35 km diameter) post-basin,pre-basa’t craters
which may also have been eruption sites.

Procellarum is inferred to have teen a topographically
low highland area punctuated by small basins and craters.

In this respect it would have resembled Australe but




Figure 5. The distribution of basalt forme
ations within Cceanus rrocellarum. Note the
restriction of the Repsold Formation to the
northwest. The Telemann Formation occupies a

isolated patches near the mare/hignland
boundery. The Hermann Foraation occupies
extensive areas of Procellarum while the
Sharp Formation covers most of the
central area of the mare and occurs at
)\ the outer edge as small flows. The
¥\ Marius Hills are indicated by c.

SHARP FORMATION

=] HERMANN FORMATION

TELEMANN FORMATION
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lacked the basinal structure. That is, vents were
initially located on the floors of craters. It is not
known whether the large volcanic complexes within Procel-
larum were erupting from the time of initiation of the
topographic low. No early volcanic materials can be
traced to the complexes but such materials may simply

be buried by younger basalts.

Composition and nature of surface-exposed, early mare fill:

Early (pre-3.8 b.y. ; Turner,1977) mare basalts
(10003, 70215) returned from Apolloc sites are characterized
by high Tio2 contents (> 10 wt%), low A1203 contents( < 11 wt%)
low FeO contents( <20 wt%), and average MgO contents (about
8 wt%) (Papike et al,1976). At the Apollo 17 site the basalts
are accompanied by similarly-aged, titanium-rich glass
spherules interpreted to be pyroclastic deposits(e.gq.,
Heiken et 2l,1974). Similar pyroclastic deposits are
believed (Head,1974 b) to comprise the extensive dark
mantle deposits developed across the lunar surface. In
Procellarum, early (3.75 + 0.05 b.y.) titanium-rich basalts
form the Repsold Formation(Whitford-Stark and Head, 1980 a)
developed as surface basalts in the northwest of the mare
and as dark mantle deposits in the Sinus Aestuum region
(figure 5). A magnesium-rich, titaniferous (3.5 to 5.5 wt%
TiO,) basalt has been interpreted (Head et al,1978) to form
the early (3.75 + 0.05 b.y. :Boyce and Johnson,1977) £fill

of the Crisium basin while titaniferous basalts may have
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been erupted early in the history of Mare Frigoris (
Hawke and Head,1980). Undated titanium-rich glasses
were also found( Reid et al,1972) to comprise about 5%
of the Apollo 12 regolith glasses. Comparably-aged,

titanium-rich basalts are not observed in Mare Imbrium

although an early (3.5 # 0.25 b.y.), titanium-rich basalt
does occur in the northeast(figqure 6) (Whitford-Stark and
Head, 1980 b). Furthermore, undated, titanium-rich(>13 wt%)
glasses were found in Apollo 15 samples(e.g.,Ridley et al,
1973) albeit in minor quantities. An old, titanium-rich
basalt could therefore be present but be buried by younger
basalts in Imbrium, The available evidence therefore
suggests that early, post-Imbrium basalts( about 3.75 to
3.9 b.y.) erupted across most of the lunar nearside were
titanium-rich.

The titanium-rich basalts contrast significantly in
composition with the Imbrian-aged basalts and Imbrian or
possibly Nectarian-aged (Wilhelms and El-Baz,1977) plains
of Mare Smythii. Conca and Hubbard (1979) show these materials
to be enriched in A1203 (16 to 24 wt%) and to have MgO
contents up to 16 wt%. No returned lunar mare basalt
sample has this composition. The chemically closest materials
are samples from the Apollo 14 site(14053,14072) which have
A1203 contents approaching 14 wt% and MgO contents up to
12.2 wt% and which are considered by Ridley(1975) to be
pristine igneous rocks with ages of about 3.95 to 4.04 b.y.
(Turner,1977; Nycuist,1977). Closer, chemically, are the

XREEP basalts (15 to 20 wt% Al,0, and 7 to 15 wt% MgO)
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(Meyer,1977) but the orbital gamma-ray data(Metzger et al,
1977) indicates that Mare Smythii does not have the high
thorium contents required of KREEP basalts. It would
therefore appear that Mare Smythii contains an unsampled
type of mare basalt and that eruptions of widely divergent
chemistry were taking place synchronously at the lunar

surface.

Eruption stvle of the early titanium-rich unit:

No vents have been observed in the Repsold Formation
of Procellarum. It, and the early titanium-rich basalts
of Crisium and Serenitatis are all preserved near the
topographically high highland/mare boundary. Evidence of
basin-center subsidence (Solomon and Head,1979), subsurface

mare basalt layering(Peeples et al,1978), and excavation “

.
. venom = -

—~

Whitford-Stark and Head, 1980 a), all serve to indicate that
the old titanium-rich basalt was areally extensive and has
been largely covered by younger materials. Maxwell and
Phillips(1978) argue, on the basis of radar-detected sub-
surface layering, that the unit in Crisium could be from
1.0 to 2.0 km thick. In Procellarum the unit has been
assigned an average thickness ¢f 125 m and a total volume

of 2.1 x 10° km>

(Whitford-Stark and Head, 1980a). The great
volumes and apparent lack of identifiable vents combine to
suggest a £lood-style(Greeley,b1976) eruption fcr the early

titanium-rich basalts., Associated dark mantle deposits
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appear to have exhibited continuous or strombolian-style

eruptions(Wilson and Head, 1980).

Further pre-graben basalts:

The early titanium-rich basalts of Procellarum
were followed by the Telemann Formation basalts(Whitford-
Stark and Head,1980a). These younger(3.6 * 0.2 b.y.)
basalts appear to have a low or Very Low Titanium content.
similar to VLT basalts(Papike and Vaniman,1978). Basalts
with similar compositions are common at the Luna 24 site
in Crisium, have been found in Apollo 17 samples(Papike
and Vaniman,1978), and may be present at the Apollo 15
site( Steele et al,1977). Similarly low titanium contents
also characterize the green glass at-the Apollo 15 site
(Papike and Vaniman,1978). Ages obtained on green glass
include 3.79 # 0.08 b.y.(Husain,h 1972), 3.38 + 0.06 b.y.,
and 3.29 + 0.06 b.y. (Podosek and Huneke,1973; Huneke et al,
1974) while Luna 24 VLT samples cluster at 3.30 + 0.05 b.y.
(The Lunatic Assylum,l1978). Delano (1979) has argued that
the Apollo 15 green glass was derived from at least five
separate magma chambers. Furthermore, Grove and Vaniman
(1978) suggest that the Luna 24, Apollo 17 VLT basalts and
Apollo 15 green glass ccmpositional differences required
three distinct source regions and/or different degrees of
partial melting in each source. In the light of theée
arguments it is possible that the age variation recorded

in the Apollo 15 green glass is real and that the similar
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age of the younger Apollo 15 green glasses and Crisium
VLT basalts may be fortuitous. Additionally the Apollo 17
VLT basalts occur in breccias dated at 4.0 b.y. and as
two chemically distinct, young(?) series of glasses in
the regoiith (Warner et al,1979). It woﬁld therefore appear
that titanium-poor basalts were erupted in distinct
episodes ranging in age from perhaps 3.0 to 4.0 b.y.

with probably repeated eruptions of the same composition
in each mare. At least two, perhaps three episodes of
titanium-depleted basalts have been recognized in Mare
Imbrium on the basis of photogeologic and remote-sensing
criteria(Whitford-Stark and Head,1980b). The younger two
of these episodes appear to have been preceded by perhaps
three episodes of intermediate basalt eruption and an
episode of titanium-rich basalt volcanism(Whitford-Stark
and Head, 1980b).

I The Telemann Formation in Procella
the eruption of intermediate basalts belonging to the
Hermann Formation with an estimated age of 3.3 + 0.3 b.y.
(Whitford~-Stark and Head, 1980a). The Hermann Formation
appears to have been erupted in at least two major episodes
and graben formation terminated during its emplacement
(Whitford-Stark and Head,1980c). Rocks returned from the
Apollo 12 site, wuich constitute part of the Hermann
Formation, have argon ages in the range 3.15 + 0.06 to
3,27 # 0.05 b.y.(Turner,1977) and Rb/Sr ages most closely
bracketed by 3.16 + 0.09 and 3.36 + 0.10 b.y.(Nyquist,1977).

In Imbrium, the last mare unit that can be shown to be
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cut by graben is the intermediate Unit 5 with an estimated
age of 3.3 + 0.3 b.y.(Whitford-Stark and Head,1980b). It
would therefore appear that the termination of graben
production was approximately synchronous in both Imbrium
and Procellarum and occufed during the eruption of similar
composition basalts in each. The recognition of at least
five (perhaps seven,including KREEP and a possible high
titanium basalt) basalts in Imbrium predating the termin-
ation of graben production but only three in Procellarum,
suggests that the magmatic evolution of the former was
more complex.

Eruption of VLT and intermediate basalts in Procellarum
and intermediate basalts in Imbrium appears to have been
approximately synchronous with the eruption of feldspathic
basalts in Mare Fecunditatis at about 3.4 to 3.6. b.y. |

Turner,1977) and the younger VLT basalts in Crisium.

Eruntion stvlie of pre-agraben basalts:

The Telemann Formation titanium-depleted basalts
can be definitively shown to have been locally derived
from the Aristarchus Plateau(Whitford-Stark and Head, 1980a)
where they are associated with at least 36 sinuous rilles
(Whitford-Stark and Head,1977b). Other areas of northern
Procellarum and patches at the mare/highland boundary
and mare ridge crests(Pieters et al,1980) cannot be related
to identifiable vents. It is extremely doubtful, however,

that all the Telemann Formation basalts in the 1,700,000 km2
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Procellarum were derived from the Aristarchus Plateau. A
study by Head and Wilson(1980) indicates that the most
likely mass eruption rates for the sinuous rilles with
large source craters at the Aristarchus Plateau was of

7 10

the order of 10  to 107 kg/s. Whitford-Stark and Head

(1980a) estimated an average thickness of 250 m for the
Telemann Formation. This, plus the earlier Repsold Form-
ation appears to have been sufficiently thick to flood
the majority of the pre-existing topography in central
Procellarum except at the volcanic complexes themselves.
In southeast Procellarum, however, the preservation of
the Telemann Formation around highland remanents demon-
strates that it obviously d4did not eradicate prior topo-
graphic variations.
The proximity of the Aristarchus Plateau to Mare
Imbrium suggests that the former could also have provided
VLT basalts to the early infil of the latter. An indeterm-
inable volume of these basalts were then covered by younger
Imbrium lavas. The possible early age quoted for a green
glass fragment from the Apollo 15 site is also suggestive

of early titanium-poor magmas being locally derived within
Imbrium. Other pre-graben basalts within Imbrium are largely
confined in the area defined by the outer mare edge and

the inner ridge ring; this is largely because the mare
center is occupied by younger surface basalts. It also
implies ,however, that a sufficient thickness of basalt has
accumulated between the basin rings that either the hydro-

static head was incapable of lifting further magma above
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the existing basalts or that the local slope prevented
further basalt deposition. By artificially flooding a
topographic model of the Orientale basin, Head(1979)

showed that flooding of central Orientale to the peak

'ring accounted for less than one third the lava area and
less than one third of the volume required to make

Orientale similar in appearance to Imbrium. Further flooding
to the Cordillera Scarp tripled the lava area and doubled
its volume( figure 7). Although Head's model is an over-
simplification of the emplacement locations, it excellently
illustrates that by the time of graben termination, the
bulk of the volume of basalts occupying Imbrium had been
erupted, Additionally, the apparent youth(3.5 # 0.25 b.y.)
of the earliest identified surface basalts suggests that
most of this volume is unrepresented by presently observed
lavas. Those surface basalts which are obssrved appear to

l be predominantly of intermediate composition(figure 6), “

generally are defficient in surface features such as sinuous
rilles, and appear, on average, to be thicker than basalts

of other compositions(Whitford-Stark and Head, 1980b).It would

therefore appear that not only were basalts of differ-.
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ing composition being synchronously erupted but also that

the styles of the eruptions differed. 1

The initiation and termination of graben production:

Both Imbrium and Procellarum have associated graben |
structures, supporting the observations of Lucchitta and 1
Watkins(1978) that graben formation is related neither to
basin shape nor the presence or absence of a mascon. In
Imbrium the graben are confined to the mare side of the
Apennine Mountains while in Procellarum, though present on
the mare surface, extend up to 450 km into the adjacent
highlands. The Procellarum graben are best developed to
the southwest and around Mare Humorum, exhibiting patterns
both concentric and radial to the mare £ill. Golombek(1979)
related the average width of the graben to the thickness
of the megaregolith layer, arguing that the two sides of
the graben converged at a depth corresponding to the base
of the megaregolith. One product of his analysis was that
the southwest Procellarum graben appeared to indicate a
thickening of the megaregolith toward the Orientale basin:

a result to be expected from the increased Orientale

ejecta thickness. The values he obtained were about 1.9 km

thickness near Procellarum, rising to 3.9 km near Orientale.
Whitford-Stark(1974) showed that both floor-fractured

craters and graben were distributed around, and were there-

fore related to, the lunar maria. More recently Solomon and

Head(1979) have shown that graben location is a function of
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the global thermal stress and local stresses resulting

from mare basalt loading. That is, the location, extent,

and age of graben formation are related to the relative
thickness of the elastic lithosphere and the basalt load.
Lucchitta and Watkins(1978) determined that lunar graben
production terminated at 3.6 * 0.2 b.y. while Whitford-Stark
and Head(1980a,b) showed that it terminated in Procellarum
during the deposition of the Hermann Formation(3.3 # 0.3 b.y.)
and in Imbrium between the eruption of Units 5 and 6(3.3 %
0.3 b.y.). The apparently synchronous termination of graben
production in Imbrium and Procellarum would be best explained
as a result of a moonwide process such as cooling of the
interior (Solomon and Head,1979). However, since the basalt
thickness in Imbrium is substantially greater than that in
Procellarum, a difference in lithosphere thickness between
each is required to satisfy the Solomon and Head (1979) model.
Head and Solomon(1980) found that at the time of graben
formation, the elastic lithosphere was 50 to 75 km thick
beneath Imbrium but less than 25 km thick beneath Procellarum
(Head et al,1980). The preferential development of graben
adjacent to central Procellarum and the volcanic complexes
developed there suggest a variable lithosphere thickness
beneath the mare. A similarly variable lithosphere thickness
beneath Imbrium has been propcsed (Head and Solomon,1980): it
being thickest beneath central, eastern and southern Imbrium.
This greater lithosphere thickness may be the cause for the

apparent lack of graben in Units 2 and 3 of northern Imbrium.
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Composition of post-graben basalts:

The post-graben basalts of Procellarum include the
younger members of the intermediate composition Hermann
Formation(3.3 + 0.3 b.y.) and the Sharp Formation titanium-
rich basalts(2.7 + 0.7 b.y.) (Whitford-Stark and Head, l980a).
Spectra (Pieters et al,1980) suggest that the different
members of the Hermann Formation could be compositionally
distinct with varying pyroxene concentrations.Alternatively,
the spectral variations could result from glass concentration
or composition differences in the regolith. Similarities in
the opaque mineral modes for the three main basalt types
returned from the Apollo 12 site, but extremely variable
but consistent pyroxene and olivine modes(Papike et al,1976)

would support a pyroxene variation as the cause of the

spectral differences. Likewise, although the Sharp Formation

basalts are characterized by high titanium concentrations,
there appear to be some compositional differences between

them. In particular, one group has TiO., concentrations of

2
about 4.0 to 6.0 wt% , while another 6.0 to 8.0 wt%(Pieters
et al,1980).

The relatively simple chemistries of the Procellarum
post-graben basalts are not reflected by those of Imbrium.
In Imbrium there appears to have been at least two phases
of VLT basalts, one of intermediate basalts, and two of
titanium-rich basalts(Units 5 -~ 10, figure 6). Rocks
returned from the Apollo 15 site include compositionally

distinct olivine and pigeonite basalts (TiO.,l1.0 to 3.0 wts%)

2'
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and the very low titanium (TiO2 less than 1.0 wt%) green
glass (Papike et al,1976). Other yellow, brown, and orange
glasses from the Apollo 15 regolith may represent locally
derived pyroclastic deposits(Hawke et al,1979). The young
(less than 3.3 b.y.) titanium-rich basalts(Units 9 and 10,
figure 6) of central Imbrium are spectrally similar to those
of central Procellarum and, indeed, are in part derived

from the same sources. The titanium-depleted basalts of
Imbrium (Units 6 and 7; 3.3 # 0.3 b.y.), however, appear to
be spectrally similar to the older (3.6 + 0.2 b.y.) Telemann
Formation basalts of Procellarum. Thus, not only do the
post-graben basalt eruptions in Imbrium appear o have

been more chemically diverse than those of Procellarum,

the compositional sequences also differed.

Post-graben basalt erupotive stvle:

In Imbrium, none of the post-graben basalts can be
shown to have been erupted within the mare ridge ring. Of
the 48 identified sinuous rille source locations, about
6% are in the highlands, 17% at the mare/highland boundary,

70% between the inner ring and the mare edge, and 6% at the

inner ring(Whitford-Stark and Head,1980b). Such a distribution

is consistent with an extensional bending stress toward the
periphery of Imbrium resulting from basin center subsidence
Solomon and Head,l1979). Further wvolcanic constructs( cones,
shields, crater rows, hills and ridges with summit craters,

and linear depressions) located in southwest Imbrium have




have been described in detail by Todhunter(1975) and also appear
to have been associated with this late peripheral extension
stage, Almost all of the young lava flows went difectly toward
the center of Imbrium indicating that in this area, in spite of
voluminous early eruptions, there was still a topographic low.
Additionally the flow directions imply that the Imbrium basin
rings at this stage were sufficiently flooded as to not form a
barrier to the lavas. An exception is in the Apennine Bench
region where a further 2.7 km of basalt is still required to
flood the Montes Archimedes section of the second basin ring
(Head, 1979).

Estimates of mass eruption rates at the source of Hadley
8 1

Rille fall in the range 10 0 kg/s (Head and Wilson, 1980)

to 10
while estimates of the flow rates of the Unit 10 Imbrium flows

4 5

fall in the range 10 m3/s (Hulme 1974b;Hulme and Fielder,

to 10
1977).
In Procellarum, a large part of the Hermann Formation

appears to have been derived from the Marius Hills and




possibly the Rumker Hills(Whitford-Stark and Head,1980a).

Over 20 separate sinucus rille sources have been*identified
near the Marius Hills associated with the Hermann Formation.
Additionally the hills contain the densest concentration
of volcanic domes and cones on the Moon, including 135 low
domes, 127 steep domes, and 59 cones(Whitford-Stark and
Head,1977b) . The smaller size of the Marius rilles and
their source craters suggests lower mass eruption rates
than those of the earlier titanium-~-depleted, Telemann
Formation basalts. The sinuous rilles originating at the
Marius Hills cannot be traced far from the complex:;
suggesting either a decrease in pre-emplacement slope or
ponding of the lava led to a decrease in the efficiency
of thermal incision by the flows (Hulme,1974b) The associat-
of these intermediate basalts with rilles contrasts with
Imbrium where, most commonly, the intermediate basalts are
rille-less. Like Imbrium, however, the younger Hermann
Formation basalts appear to have been relatively thin; an
average thickness of only 150 m being derived (Whitford-
Stark and Head,1980a) for both the pre- and post-graben
members of the Formation. Sources of the Hermann Formation
were not confined to the complexes; cones, domes, and sinuous
rilles occur in the Flamsteed region(Pieters et al,1980)
and sinuous rille sources are located along a ring cf
the south Imbrium basin(Whitford-Stark and Head,1980a).

The titanium-enriched, Sharp Formation basalts of
Procellarum are commonly, though not exclusively, associated

with sinuous rilles. These youngest Procellarum lavas were,




like those of Imbrium, largely erupted from mare/highland
boundary locations; exceptions being those erupted at or
near mare ridge crests and close to the complexes(
Whitford-Stark and Head,1980a). The Sharp Formation basalts
appear to be relatively thin with an estimated average
thickness of only 25 m(Whitford-Stark and Head, 1980a).
This thinness is reflected by their having not been able
to cross minor topographic highs such as mare ridges(
Pieters et al,1980).

In summary, the post-graben basalts of both Imbrium
and Procellarum are characteristically thin and were
erupted from locations near the mare periphery. Eruption
styles differed for different units within either mare
though Imbrium appears to have been peculier in having
late flood-style eruptions of short duration(Unit 10) (
Schaber et al,1976). Procellarum is unique in its possesion
of three large volcanic complexes: possibly a result of
a thin elastic lithosphere(Head et al,1980). The difficulties
in distinguishing the early from the late Hermann Formation
away from the mare periphery do not allow the authors to
determine whether eruptions terminated at the complexes
at the same time as termination of graben formation. Sharp
Formation basalts do have sources near, but not on, the
Marius Hills while no post-Telemann Formation basalts can
be traced to the Aristarchus Plateau. A synchronous termin-
ation of eruptions at the complexes and graben production
would satisfy the Solomon and Head(1979) model whereby

after the achievement of bulk lunar volume, global comp-
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Figure 8. Distribution of mare ridges in (ceanus FProcellarum. Note the
parallel central zone of ridges in central Procellarum, the polygonal
pattern in the north, and the reticulate pattern in the southeast.
Also indicated are the Rumker(R), Aristarchus Plateau(A), and Marius
Hills (M) volcanic complexes. S and T mark the mare extension of Rima
Sirsalis from Sirsalis E (S) to Tobias Mayer W (T), the postulated
fault boundary separating central and southeastern Frocellarum.
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ression acted to reduce the zone of extensional stress
outside the mare locad and to enhance the compression
within the load area:; the horizontal compressive stresses

acting to shut off volcanism.

A further consequence of post-graben volcanism appears
fo have been that the lunar crust was unable to completely
compensate isostatically. A small positive gravity anomaly
appears to be associated with the Sharp Formation in
Procellarum (Whitford-Stark,1980) while the centers of

the mascon maria (Imbrium,Serenitatis,Crisium,Humorum,

and Smythii) are all occupied by young basalts(Whitford-
Stark and Head, 1980a; Howard et al,l1973; Head et al,1978:
Pieters et al,1975; Boyce and Johnscn,1978) in spite of

their vents being at the mare periphery. The situation is

complicated by the apparent lack of graben in Crisium,

and Nectaris{lucchitta

Smythii,
suggested uniformity both in age(Wilhelms and McCauley, 1971)
and composition(Pieters,1978) of the Nectaris surface basalts.

Such a scenario would not be inconsistent, however, with a

thicker lithosphere beneath the eastern mascon maria(

Head and Solomon,1980) preventing the development of graben.

Mare ridge oroduction:

Both Imbrium and Procellarum contain mare ridges
(fiqures 1 and 8). In Imbrium the major portion of the
ridges outline a basin ring, largely now buried by mare

basalts, while in Procellarum the ridges exhibit three



distinct patterns in each of the three mare subdivisions:
reticulate in the southeast, a parallel centrally-located
zone in the center, and a polygonal pattern in the north.
The various arguments for a tectonic or volcanic origin
for the ridges have been summarized by Sharpton and Head
(1980) and will not be repeated here.

In both Imbrium and Procellarum ridge production can
be shown (Schaber,1973; Whitford-Stark and Head, 1980¢) to
post-date the emplacement of the youngest basalts. The
evidence for the earliest period of ridge formation,
however, is less clear-cut. In Imbrium the apparent smooth-
ing of centrally-located ridges by Unit 4(3.5 + 0.25 b.y.)
suggests that ridge formation pre-dated the emplacement of
those basalts. The initiation of ridge formation in Imbrium
therefore pre-dated the termination of graben production,
In Procellarum, the period of major ridge production pre-
dated the emplacement of the Sharp Formation(Pieters et al,
1980) . Furthermore, deformation of the Telemann Formation
(3.6 + 0.2 b.y.) appears to have pre-dated emplacement of
the Hermann Formation(Whitford-Stark and Head, 1980a) .Ridge
production in Procellarum therefore also appears to have
pre-dated the termination of graben production. Such a
scenario is consistent with the thick mare loads of the
pre-graben period and decrease i.1 subsidence with time as
the lithosphere thickened(Solomon and Head,1979).

Although an age range of at least 0.5 b.y. can ke
demonstrated for ridge production, it is difficult to

define whether individual ridges were formed gradually or
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in short, discrete intervals. Both in Imbrium and Procell-
arum it has been shown that ridges grew between successive

basalt eruptions(Schaber,1973; Bryan,1973; Greeley,1971).

Since the ages of thegse flows are indistinguishable by

currently available dating techniques, it would imply

that individual ridges could have grown extremely rapidly.
However, the generally non cross-~cutting nature and regular
offsets of the ridges also suggests that they were formed
within a uniform stress field(Whitford-Stark and Head, 1980c).
Since the distribution of ridges in Imbrium and Procellarum
differs, it follows that the stress distribution in each
differed. Such a result is to be expected because of the
differences in morphology of the two maria; the Imbrium
ridges reflecting the circular basalt distribution, and

the Procellarum ridges the oblong cutline of the mare. It
would appear, however, that a global component of stress
was superimposed on the local stress

preferential north-south alignment of the ridge pattern(
Fagin et al,1978).

In summary, mare ridges grew over a substantial time
period though individual ridges may have grown quite
rapidly, the major period of ridge production appears to
pre-date or be synchronous with the termination of graben
production though ridges continued to form after the eruption
of the youngest basalts in both maria, the ridge distribution
appears to have been controlled by the basin shape(therefore
basalt thickness variation) and a global stress component.

These observations are best suppvorted by a tectonic origin
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for the ridges even though they have also been the sites

of volcanic eruptions(e.g.,Greeley and Spudis,1978).

Post-basalt history:

Subsequent to the emplacement of the youngest basalts
in each mare, the basaltic pile has continued to deform.
This deformation included the formation of the previously
described mare ridges and the more widespread gradual
subsidence of the mare surface(Scott et al,1978). In general
it appears that basinal areas where the basaltic pile is
thickest continued to preferentially subside with respect
to areas of thin £fill. In places, however, reversed topo-
graphy along sinuous rilles suggests that formerly basiAQI
areas did not remain so(Whitford-Stark and Head,1980c).

Other post-basalt events include the formation of
impact craters. In comparison with syn- and pre-mare craters
they are generally small(less than 30 km diameter; though
Copernicus has a diameter of 93 km) and have prominent
ejecta blankets. These cratering events served to excavate
and redistribute the mare basalts and highland rocks, leading
to the formation of multi-layered regoliths(e.g.,Basu and

Bower,1977).

Summary and implications for basalt vetrogenesis:

The main features of the evolution of Imbrium and

Procellarum are outlined in figure 9. Procellarum is an

== = = 334




Figure 9. Summary of events in the evolution of Mare Imbrium
and Oceanus Frocellarum. The central column denotes age in
107 years. The length of the bars on each side of the central
column indicates the estimated time range of the event
specified.
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irregqular mare with an area of about 1,700,000 km2

a basalt £ill estimated at 0.87 x lO6 km3 while Imbrium

and has

is a circular mare with a basalt area of approximately

6 xm> (Whitford-

350,000 km2 and a volume of about 2.2 x 10
Stark and Head,1980a,b). The chemical evolution of Proc-
ellarum lavas appears to have been relatively simple with
early titanium-rich basalts followed by titanium-depleted
basalts, in turn followed by intermediate basalts and
concluding with titanium-rich basalts. Non-mare, highlands
basalts were erupted synchronously with these materials.
In contrast, although the earliest basalts of Imbrium are
unexposed, the surface basalts exhibit no simple chemical
trend; different chemistries appear to have been synchron-
ously erupted, at least ten distinctive eruptive phases
can be identified, and KREEP basalts formed an important
component of the early basalt fill. Eruption styles in the
ia were gimilar thouagh Procellarum lacks the short-
duration flood basalts peculier to Imbrium and contains
three unique igneous complexes. The youngest basalts in
both areas were preferentially erupted from vents near the
mare periphery and were titanium-rich. Tectonic deformation
in both maria was essentially similar both in timing and
morphologic result. A major difference, however, was the
areal distribution of the deformed products:; this being
locally controlled by the basin morphology, basalt thick-
ness variation, and ela;tic lithosphere thickness differ-
ences.

Currently available models of mare basalt petrogenesis
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have been reviewed by Papike et al(1l976). Three basic

types of models have been proposed: one with a cumulate
source, one with a primitive source, and one invoking
assimilation processes. Each model has its attractive
qualities but, additionally, each can be questioned on

the basis of chemical or isotopic data(Papike et al,1976).
Furthermore, samples returned from the lunar landing sites
were generally understood by experimental petrologists to
be representative of mare basalts in general. These samples
suggested a fairly simple relationship between basalt
chemistry and age. By synthesizing remote-sensing data,
Pieters(1978) was able to show that there are many basalt
types at the lunar surface which remained unsampled. More
recently, by combining remote-sensing and photogeologic
data, the present and other authors(Whitford-stark and
Head,1980a,b; Pieters et al,1980) have shown that there is
no simple relationship between basalt chemistry and age:
basalts of different chemistry were erupted simultaneously
both within and between maria and the chemical sequences
differed between maria. Additionally it was shown that even
the surface basalts may not represent the entire lunar
basaltic suite; the early eruptives being buried by younger
materials. The emerging picture is one of early(pre- 3.3 +
0.3 b.y.) voluminous eruptions, perhaps with little chemical
diversity (KREEP and titanium-rich basalts) and subsecuent,
volumetrically small(<1,500 km3), chemically diverse

eruptions. The ubiquity of vents and complex age and

composition relationships of lunar mare basalts suggests




that they had chemically heterogeneous, perhaps unconnected,
source regions. These observations are not readily recon-

cilable with existing petrogenetic models. Moreover, there

is now ample evidence that basaltic volcanism did not

commence following the "terminal lunar cataclysm" but may
have preceded it by in excess of 200 million years and
may have continued, albeit in small volumes, to at least

2.0 b.y. ago, a duration of 1.2 b.y.
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